FC-1 / JF-17 Fighter
The FC-1 (Fighter China-1) Xiaolong is a single-engine, single-seat multirole fighter aircraft jointly developed by Chengdu Aircraft Industry Group (CAIG) and Pakistan Aeronautical Complex (PAC). The aircraft is designated JF-17 Thunder by the Pakistani Air Force (PAF). The first batch of 50 aircraft in the Block-I variant were delivered to the PAF between 2008 and 2013. Production of further 50 aircraft in the improved Block-II variant reportedly began in early 2014.
Key Facts
Number in service 50 (Pakistani Air Force)
Designer Chengdu Aircraft Design Institute (611 Institute)
Manufacturer Chengdu Aircraft Industry Group (CAIG)
Pakistan Aeronautical Complex (PAC)
Maiden flight 25 August 2003
IOC 2008 (PAF)
Crew One
Role Air superiority / ground attack
Development History
The FC-1/JF-17 can trace its origin to the Super-7 programme initiated in 1989 by CAIG and U.S. aerospace company Grumman. The aim of the programme was to introduce a radically redesigned Chengdu J-7 (Mig-21 Fishbed-C) fitted with Western engine and avionics for the PLAAF as well as potential international customers. Grumman pulled out of the programme in late 1989 following the military technology boycott on China imposed by the U.S. government. CAIG resumed the development in 1991 under the revised Fighter China 1 programme.
In 1995, Pakistan in search for a replacement for its ageing Dassault Mirage III/5s, Chengdu F-7s and Nanchang Q-5s entered an initial agreement with China to jointly develop a modern multirole fighter aircraft. Russian Mikoyan also joined the development programme in the same year to provide design support and sent a team of engineers to CAIG to assist the development. Russia also agreed to supply the Klimov RD-93 turbofan jet engine to power the aircraft.
In 1999, China and Pakistan signed an official joint-development agreement, with each side sharing 50% of the total development cost. CAIG is the prime Chinese contractor for aircraft development and manufacture, while Pakistani Aeronautical Complex (PAC) is the main partner responsible for post-sale service and maintenance, as well as the production of some parts for the aircraft in Pakistan. The first six prototypes were produced in 2003 and the aircraft made its maiden flight on 25 August 2003.
Super-7
FC-1 prototype
PAF JF-17 Thunder (Block-I)
Production and Deliveries
The initial order from the PAF was for eight aircraft. Delivery of the first two pre-production variant JF-17s to the PAF took place in March 2007. The remaining six examples had been delivered by 2008. A further order for 42 aircraft worth about US$800 million was signed in March 2009, and the production of these aircraft was completed in 2013.
Production of the improved Block-II variant JF-17 began in January 2014, with a further 50 examples expected to be produced for the PAF. PAC is also expecting to export the aircraft to a number of potential buyers including Sri Lanka, Kuwait and Qatar, with the first deal to be signed in 2014. CAIG is also currently developing a two-seater fighter-trainer variant of the FC-1/JF-17. However, the PLAAF has shown no interest in acquiring the aircraft.
Design
The FC-1/JF-17 adopts a rather conventional aerodynamic layout, with mid-mounted wings, lateral air intakes, single-frame bubble cockpit canopy, and two under-belly stabilising fins. The drag chute bay is located at the root of the rudder. An electronic equipment pod is mounted on the tip of the rudder. The production variant JF-17 features a diffuser supersonic inlet (DSI) similar to those of the U.S. F-35 fighter for better air-intake efficiency.
Radar
The JF-17s in service with the PAF are fitted with an Italian Grifo S-7 multi-track, multi-mode, pulse Doppler radar. The radar has 25 working modes and a non-break-down time of 200 hours, and is capable of “look-down, shoot-down”, as well as for ground strike abilities. Alternatively, the aircraft can be fitted with the Thales RC400, GEC Marconi Blue Hawk, Russian Phazotron Zemchug/Kopyo, and Chinese indigenous KLJ-7 developed by Nanjing Research Institute of Electronics Technology (NRIET).
Cockpit and Avionics
The aircraft’s avionics architecture is supported by two mission computers based on Multi-Bus System (MIL-STD-1553B). The heart of the system is a 32-bit Weapon and Mission management Computer (WMMC) which performs mission computations, flight management, reconfiguration / redundancy management and in-flight system self-test.
- Navigation – Hybrid inertial navigation system (INS) and global positioning system (GPS);
- Communications – Independent data link with two Independent wide-band radios with anti-jamming capabilities;
- Electronic warfare (EW) – Self production jammer, missile approach warning system, radar warning receiver (RWR), chaff & flare dispenser;
- Identification of Friend and foe (IFF) – IFF interrogator for target verification at the BVR range;
- ‘Glass’ cockpit – Three large Multifunction Colour Displays (MFD) and smart Heads-Up Display (HUD) with built-in symbol generation capability; HOTAS;
- Targeting — Laser Designator and Targeting Pod (LDTP) for target illumination and detection with day/ night capabilities;
Weapons
Fixed weapon includes a GSh-23 dual-barrel 23mm cannon. Alternatively the aircraft can be fitted with a GSh-30 dual-30mm cannon. There are 7 stores stations, including one under the fuselage, 4 under the wings, and 2 wingtip mounted, with up to 3,700kg weapon payload.
The aircraft is callable of ‘beyond-visual-range’ (BVR) attack capability with the PL-12/SD-10 active radar-homing medium-range air-to-air missile (MRAAM) developed by China Leihua Electronic Technology Research Institute (LETRI, also known as 607 Institute). The aircraft also carries two short-range AAMs on its wingtip-mounted launch rails. The options include U.S. AIM-9P and Chinese PL-7, PL-8, and PL-9.
For air-to-ground mission the aircraft can carry a range of Chinese and foreign-made weapon systems, including LT-2/LT-3/GBU-16 laser-guided bombs, LS-6 satellite-guided bombs, Brazilian MAR-1 or Chinese LD-10 anti-radiation missiles, and C-802K anti-ship missiles.
The aircraft can carry a special pod allowing day/night delivery of laser-guided weapons. In addition, it can also carry unguided weapons such as low-drag general-purpose (LDGP) bombs and unguided rocket launchers.
Engine
The FC-1/JF-17 is powered by a Russian-made Klimov RD-93 turbofan jet engine rated 49.4kN dry or 84.4kN with afterburning. The RD-93 is a derivation of the RD-33 used by the MiG-29 fighter. In 2007, China signed a contract with Russia to supply 150 RD-93 engines for the JF-17 production.
Liyang Aero Engine Corporation in Guizhou is reportedly developing an indigenous turbofan engine designated WS-13 (or Tianshan-21) as an alterative powerplant option for the FC-1. The engine was said to have been based on the RD-93 design with some modifications.
Specifications
DIMENSIONS
Length 14 m
Wingspan 8.5 m (without wingtip missiles)
Height 5.10 m
Wing area 24.4 m2
WEIGHTS
Empty 6,411 kg
Loaded 9,100kg (without wingtip missiles)
Normal take-off 9,100 kg
Max take-off 12,700 kg
Fuel capacity 2,300 kg
Max payload 3,700 kg
PROPULSION
Powerplant 1X Russian Klimov RD-93 turbofan jet engine
Thrust (dry) 49.4kN
Thrust (afterburning) 84.4kN
PERFORMANCE
Max level speed Mach 1.8 (at altitude)
Max climb rate N/A
Service ceiling 16,700 m
Ferry range 3,000 km
Combat radius 1,350 km
In-flight refuelling (Block-I) No; (Block-II) Yes
G limit +8.5/-3
ARMAMENTS
Fixed weapon 23mm or 30mm dual-barrel cannon
External hardpoints 7 (1 under the fuselage centre-line; 4 under the wings; 2 on the wingtips)
Air-to-air missiles PL-8, PL-11, PL-12
Air-to-surface missiles MAR-1, LD-10, C-802K
Bomb LGB (LT-2/LT-3/GBU-16), Satellite -guided bomb (LS-6)
Other Unguided rocket launchers
AVIONICS
Fire-control radar options Grifo S-7 multi-track, multi-mode, pulse Doppler radar;
GEC Marconi Blue Hawk;
Russian Phazotron Zemchug/Kopyo;
Chinese indigenous KLJ-7;
Other