What's new

JF-17 Block III Multirole Fighter

Status
Not open for further replies.
but you do agree that the 16 is a better aircraft in terms of structural design and would've an upper hand in a dog fight over the 17? and to my extremely limited knowledge on the subject, dont u think a lighter aircraft(composites) would mean more control and stability in a dogfight?, a larger aircraft would mean more hardpoints which means it could carry more wvr missles for a dog fight?, and a buble canopy would mean more situational awareness for the pilot?, i can see no use of a buble canopy in a bvr engagement. what is ur opinion?


with respect bvr means beyond visual range, if u are using the canopy for a visual on a bogey that makes it a wvr engagement not a bvr one, we are not talking about bvr engagements here, dogfights are wvr engagements and a larger aircraft means more hardpoints which means more wvr missles can be carried for dogfights..

bro do you know what strutures is? on an aircraft
 
. .
he has no idea. just waffling and throwing a big word here and there

You're most welcome to add your own thoughts on the matter as you see fit.

Can you explain, how technically DSI set limits to a/c speed?

If you look at all intake designs for combat aircraft, as opposed to those you see on an airliner, there are some distinct differences worth mentioning. That's partly because the airliner will never need to exceed subsonic speeds, and the design considerations don't require anything more. However, fighter aircraft need the intake to perform at both subsonic and supersonic speeds including when the aircraft is maneuvering, some other considerations are also taken. The ability to perform at supersonic speeds requires you to do two things that you couldn't do without some complexity in the intake design. The first is that you've got to slow the air down that's coming in to the intake, so that it is no longer supersonic, a slower uniform flow and to minimise pressure loss.

geWAa.png


This is what they mean when you hear people talk about multiple shock inlets, each shock is designed a specific way to slow down the flow. Each configuration of shocks is meant to slow the air down in a particular way. The second issue is the turbulent boundary layer which is a problem particularly at supersonic speeds.

p262.jpg


By the time the air moves over the surface from the nose of the aircraft to the inlets, this layer develops, it's laminar at lower speeds and turbulent at supersonic. Allowing this and other supersonic flow to enter the intake and not slow down before it reaches the compressor causes compression issues.

To prevent the boundary layer from entering the inlet, there's often a gap and splitter between the intake and the rest of the fuselage, this is why you see this design on many aircraft and why the intake isn't simply blended right in like this, or this, and this.

DSI however deals with this in a much smarter way, the bump and the forward swept cowel work to deflect the boundary layer away, and it does this without heavier more complex and more costly designs and without that gap between the intake and the fuselage.

5chou6r.jpg


For the top speeds of any given aircraft inlet complexity varies, take aircraft like the F-15, F-14, or even Concorde and many others, the intake geometry can be varied according to need to make the aircraft perform at higher speeds and AoA.

f14-detail-airintake-01.gif


It's this ability, or rather requirement that isn't present in DSI, DSI only has a static configuration. And it's designed to work at all speeds up to it's stated maximum without the need for complex, heavy and costly moving parts. That's why the F-35, JF-17, F-16's DSI model, all are stated to be limited to mach 2 or below. The DSI inherently rapidly loses efficiency on these aircraft at speeds approaching mach 2.

So it's probable that the F-16 that was tested with DSI, JF-17, F-35, J-10B with DSI and most other aircraft with this design are limited to mach 2 and below. Though it doesn't have to be the case that they are limited by drag, insufficient thrust, too much weight and therefore TWR or whatever else people talk about increasing on the JF-17
to make it achieve mach 2. It's inlet limited to this speed, and the DSI performs well around the stated speed. So for mach 2 or above, you need more complexity, more moving parts, more oblique shocks to slow the air down.

Any speed above and it will cause supersonic flow to enter the intake and cause compression issues and boundary layer deflection probably won't work. DSI perhaps could be optimised for better supersonic performance, but since it is again a static configuration it would then lack the current efficiency at lower speeds.

On a final note...

If there's anyone who still won't take my word for it, or wants another source to confirm the same as what I've been saying, here's another source:

The flight tests covered the entire F-16 flight envelope and achieved a maximum speed of Mach 2.0. The modified aircraft demonstrated flying qualities similar to a normal production F-16 at all angles of attack and at all angles of sideslip. Lockheed Martin test pilots performed two inflight engine restarts and 164 successful afterburner lights, with no failures. Fifty-two afterburner lights were performed during hard maneuvers. No engine stalls or anomalies occurred during the test flights.

..............

Historically, inlet complexity is a function of top speed for fighter aircraft. Higher Mach numbers require more sophisticated devices for compressing supersonic airflow to slow it down to subsonic levels before it reaches the face of the engine. (Jet engines are not designed to handle the shock waves associated with supersonic airflow.)

These compression schemes involve the conversion of the kinetic energy of the supersonic airstream into total pressure on the compressor face of the engine. Speeds over Mach 2 generally require more elaborate compression schemes. The F-15 inlet, for example, contains a series of movable compression ramps and doors controlled by software and elaborate mechanical systems. The ramps move to adjust the external and internal shape of the inlet to provide the optimum airflow to the engine at various aircraft speeds and angles of attack. Doors and ducting allow excess airflow to bypass the inlet.

..............

Designers of supersonic aircraft deal with this boundary layer phenomenon by redirecting the layer before it reaches the engine and placing the inlet away from the boundary layer in the freestream, where airflow is unaffected by the boundary layer phenomenon. On the F-16, a structure called a diverter provides a 3.3-inch gap between the fuselage and the upper lip of the inlet. The size of the gap equates to the thickness of the boundary layer at the maximum speed of the F-16. Other fighters remove boundary layer airflow with combinations of splitter plates and bleed systems. The latter redirect the unwanted airflow through small holes in the compression ramps to bleed ducts within the inlet. The DSI bump functions as a compression surface and creates a pressure distribution that prevents the majority of the boundary layer air from entering the inlet at speeds up to Mach 2. In essence, the DSI does away with complex and heavy mechanical systems.

http://www.codeonemagazine.com/article.html?item_id=181
 
.
but you do agree that the 16 is a better aircraft in terms of structural design and would've an upper hand in a dog fight over the 17? and to my extremely limited knowledge on the subject, dont u think a lighter aircraft(composites) would mean more control and stability in a dogfight?, a larger aircraft would mean more hardpoints which means it could carry more wvr missles for a dog fight?, and a buble canopy would mean more situational awareness for the pilot?, i can see no use of a buble canopy in a bvr engagement. what is ur opinion?

I stated my opinion sir. The Bubble Canopy, Composites, being larger, these things really don't help in dog fights. I am not saying which plane is better, you said that F16 have better structure for dog fight and then went on the mention these points. Just wanted to point out that THESE actually are not that helpful in WVR. In fact, some of these may well be a setback.

Composites wont have any effect on a plane being better in a dog fight.
Larger aircraft will also mean presenting a LARGER target to the enemy aircraft to shoot at.
The bubble canopy will increase situational awareness but even in WVR engagement, visually spotting the enemy is getting less and less common with modern state of the art gadgets available to do this for you.

So not, i do not think that these three features that you mentioned will help a plane in a dog fight.
 
. . .
Clearly stated by Lockheed ''The flight tests covered the entire F-16 flight envelope and achieved a maximum speed of Mach 2.0. The modified aircraft demonstrated flying qualities similar to a normal production F-16 at all angles of attack and at all angles of sideslip. Lockheed Martin test pilots performed two inflight engine restarts and 164 successful afterburner lights, with no failures. Fifty-two afterburner lights were performed during hard mane ''

In reference to some folks stating a Mach 1.6 limit on an Ac due to dvi intakes
 
Last edited:
.
But still the f 16 will take the crown in dog fights, unless we get hobs for 17, however most engagements in the future will be bvr hence 17 will be a much better option for us in that scenario as compared to block 52's and by the way hmd is one thing which is unconfirmed in 17 unless the chinese churn something credible up, i dont think the brits or the french will part that easily with topowl or hmss, specially when u factor in our close proximity to china...


Its bubble canopy for one, its fly by wire system, its a larger aircraft with longer range, larger use of composites and im not an aviation expert yet f 16 is the most potent dog fighter known to man, it beat the hell out of the f 35 in dogfights.
yeah i was talking about bvr fights, block 3 will beat f-16 block 52 because 17 has AESA and SD-10 whihc has longer range than AIM-120 AMRAAM. Idk if the F-16 has AESA, can anyone elaborate.

The thing about F 35 is that it wasn't built for dogfights. the F-16 beat the f35 in every scenario of attack and defense and im pretty sure JF-17 can beat it too. F-35 was built for stealth and it doesnt have to dogfight. the F-35 will detect and destroy the F-16 way before it can be detected. the F-35 has the advantage of stealth and technology
 
. .
yeah i was talking about bvr fights, block 3 will beat f-16 block 52 because 17 has AESA and SD-10 whihc has longer range than AIM-120 AMRAAM. Idk if the F-16 has AESA, can anyone elaborate.

The thing about F 35 is that it wasn't built for dogfights. the F-16 beat the f35 in every scenario of attack and defense and im pretty sure JF-17 can beat it too. F-35 was built for stealth and it doesnt have to dogfight. the F-35 will detect and destroy the F-16 way before it can be detected. the F-35 has the advantage of stealth and technology


May be off topic but since you mention F-35, here is an article I came across while surfing the Net. I am not competent to comment on how accurate it is but it is certainly a food for thought.

Locklin on science
How to shoot down a stealth fighter
Posted in Design by Scott Locklin on January 20, 2017

Editorial note: I actually wrote most of this five years ago, but was reluctant to publish it for misguided patriotic reasons. Since people are starting to talk about it, I figure I might as well bring some more sense to the discussion.

I’ve already gone on record as being against the F-35. Now it’s time to wax nerdy as to why this is a dumb idea. I’m not against military spending. I’m against spending money on things which are dumb. Stealth fighters are dumb. Stealth bombers: still pretty dumb, but significantly less dumb.

f-35-turkey.png


I have already mentioned the fact that the thing is designed for too many roles. Aircraft should be designed for one main role, and, well, it’s fine to use them for something else if they work well for that. The recipe for success is the one which has historically produced good airplanes: the P38 Lightning, the Focke-Wulf Fw-190, the F-4, the F-16, the Su-27, and the A-10. All of these were designed with one mission in mind. They ended up being very good at lots of different things. Multi-objective design optimization though, is moronic, and gets us aircraft like the bureaucratic atrocity known as the F-111 Aardvark, whose very name doesn’t exactly evoke air combat awesomeness.

What is stealth? Stealth is a convergence of technologies which makes an aircraft electronically unobservable, primarily via Radar. The anti-radar technology is two-fold: the skin of the aircraft can be radar absorbent, but the main trick is to build the aircraft in a shape which scatters the radio energy away from the radar set which sent the signal. What is a fighter? A fighter is an aircraft that shoots down other aircraft. Fighters use guns, infrared guided missiles and radar guided missiles. Most modern radar guided missiles work by pointing the missile more or less in the target direction, illuminating the target with radar (from the jet, or from the missile itself; generally from the missile itself these days), and launching. The wavelength of the missile and jet radar is dictated by the physical size of the missile or jet. The main purpose of radar-resistant technology for a stealth fighter is avoiding being detected in the first place by enemy radar, but also defeating radar guided air to air missiles.

Of course, what nobody will tell you: the air to air radar guided missiles haven’t historically been very effective. The US has some of the best ones; the AMRAAM. They’ve only shot down 9 aircraft in combat thus far using this weapon; it has a kill probability of around 50% depending on who you ask. Previous generations of such missiles (the AIM-4, AIM-7 and Phoenix) were fairly abysmal. The AIM-4 was a complete failure. The AIM-7, also a turkey in its early versions with a 10% kill probability in the Vietnam War (later versions were better). The Phoenix never managed a combat success, despite several attempts, though it was somehow considered a program success anyway, mostly by paper pushing war nerds. By and large, the venerable IR guided sidewinder works best. Amusingly, the Air Force thought the beyond visual range radar guided air to air missile would make stuff like guns and dogfighting obsolete … back in the 1950s. They were so confident in this, most of the Vietnam era fighters didn’t come equipped with guns. They were completely wrong then. They’re almost certainly wrong now as well. Yet, that is the justification for fielding the gold plated turd known as the F-35; a fighter so bad, it can’t even out fight a 45 year old design.

Oh. Well, stealthy planes can defeat the IR missiles that end up being used most of the time, right? No, actually. The stealthy technology can’t really defeat such missiles, which can now home in on a target which is merely warmer than the ambient air. I could build such a sensor using about $40 worth of parts from Digikey. All aircraft are warmer than the ambient air, even “stealthy” ones. Friction is one of the fundamental laws of physics. So, if a stealth fighter is located at all, by eyesight, ground observers or low frequency radars or whatever: an IR missile is a big danger. Worse, the planes which the US is most worried about are Russian made, and virtually all of them come with excellent IR detectors built into the airframe itself. Airplane nerds call this technology IRST, and the Russians are extremely good at it; they’ve had world beating versions of this technology since the 1980s. Even ancient and shitty Russian jets come with it built into the airframe. The US seems to have mostly stopped thinking about it since the F-14. A few of the most recent F-18s have it strapped as an expensive afterthought to fuel tanks (possibly going live by 2018), and the F-35 (snigger) claims to have something which shoots sharks with laser beam eyes at enemy missiles, but most of the combat ready inventory lacks such sensors.

There is no immunity to gunfire, of course, so if you see a Stealth fighter with your eyeballs, and are close enough to draw a 6, you can shoot it down.

Now, it’s worth thinking a bit about the fighter role. What good is an invisible fighter? There are a couple of issues with the concept, which has never actually been usefully deployed in combat anywhere in all of history. It is also rarely spoken of. If you want to shoot down other jets with your stealth fighter, you have to find them first. To find them, the best way to do it is using radar. Maybe you can do this with AWACS. AWACS somewhat assume air superiority has already been established. They’re big lumbering things everyone can see, both because they have giant signatures to radar, and because they are emitting radar signals. Maybe you can turn on your stealth fighter’s radar briefly, and hope the enemy’s electronic warfare facilities can’t see it, or hope the passive radar sensors work. Either way, you had better hope it is a fairly big country, and it is dark outside, or someone could find your stealth fighter. People did a reasonable job of spotting planes with binoculars and telephones back in the day. Modern jets are a little more than twice as fast as WW-2 planes, but that’s still plenty of time to alert air defences. Invisibility to radar guided missiles is only of partial utility; if you’re spotted, and your aircraft isn’t otherwise superior in air combat (the F-22 is), you stand a decent chance of being shot down. So, for practical use as a fighter, stealthiness is only somewhat theoretically advantageous. It’s really the attack/bomber role where Stealthiness shines as a concept; mostly for taking out air defences on the ground.

The F-117 (which was a misnamed stealth attack aircraft, an actual use for the technology) was shot down in the Serbian war by a Hungarian baker by the name of Zoltan Dani. The way he did it was as follows: first, he had working radars. He did this by only turning them on briefly, and moving them around a lot, to avoid wild-weasel bombing raids. He also used couriers and land line telephones instead of radio to communicate with the rest of his command structure; he basically had no radio signal which could have been observed by US attack aircraft. He also had “primitive” hand tuned low-frequency radars. Low frequency means long wavelength. Long wavelength means little energy is absorbed by the radar absorbent materials, and, more importantly, almost none of it is scattered away from the radar receiver. Since the wavelength of a low-frequency radar is comparable to the size of the aircraft itself, the fine detail which scatters away modern centimeter-wavelength radars doesn’t have much effect on meter-wavelength radar. Mr Dani shot his SA-3 missiles up, guided it in using a joystick, and that was the end of the F-117, a trophy part of which now hangs in the garage of a Hungarian baker in Serbia.

zoltc3a1n-dani-the-serbian-commander-who-shot-down-f-117a-620x330.jpg

best hunting trophy ever

Similarly, if you want to shoot down stealth fighters, you need an integrated air defense system which uses long wavelength radars to track targets, and you dispatch interceptors to shoot them down with IR missiles, guided in by the air defense radar. Which is exactly how the Soviet Mig-21 system worked. It worked pretty well in Vietnam. It would probably work well against F-35’s, which are not as maneuverable as Mig-21’s in a dogfight. The old Mig-21 certainly costs less; I could probably put a Mig-21 point defense system on my credit cards. Well, not really, but it’s something achievable by a resourceful individual with a bit of hard work. A small country (I dunno; Syria for example) can afford thousands of these things. The US probably can’t even afford hundreds of F-35s.

Maybe the F-35 is going to be an OK replacement for the F-117? Well, sorta. First off, it is nowhere near as stealthy. Its supersonic abilities are inherently unstealthy: sonic boom isn’t stealthy, afterburners are not stealthy, and supersonic flight itself is pretty unstealthy. It does have an internal “bomb bay.” You can stuff one 2000lb JDAM in it (or a 1000lb one in the absurd VTOL F-35B). The F-117 had twice the capacity, because it was designed to be a stealth attack plane from the get go, and didn’t have to make any compromises to try to get it to do 10 other things. You could probably hang more bombs on an F-35’s ridiculously stubby little wings. But bombs hanging on a wing pylon make a plane non-stealthy. So do wing pylons. In clean, “stealthy” mode, the thing can only fly 584 miles to a target, making it, well, I guess something with short range and limited bomb carrying capability might be useful. The F-117 had twice the range. So, an F-35 is about a quarter as effective in the attack role as the F-117 was, without even factoring in the fact that it is only about a twice the radar cross section of an F-117. It kind of sucks how the F-35 costs a lot more than the F-117, which was designed for and demonstrably more useful for this mission. It’s also rather confusing to me as to why we need 2000 such things if they ain’t fighters with a significant edge against, say, a late model F-16 or Superhornet. But then, I’m not a retired Air Force General working at Lockheed. I’m just some taxpayer in my underpants looking on this atrocity in complete disbelief.

There are three things which are actually needed by Air Force procurement. We have a replacement for the F-15 in air superiority role: the F-22. It works, and it is excellent; far more effective than the F-35, cheaper and stealthier to boot. We can’t afford many of them, and they have problems with suffocating their pilots, but we do have them in hand. If it were up to me, I’d keep the stealthy ones we got, make them attack planes, and build 500 more without the fancy stealth paint for air superiority and ground attack. It will be cheaper than the F-35, and more capable. Everyone will want to “update the computers.” Don’t.

The most urgent need is for a replacement for the F-16; a small, cheap fighter plane that can be used in the interceptor/air superiority role. The US needs it. So do the allies. It doesn’t need to be stealthy; stealth is more useful in the attack role. Building a better F-16 is doable: the Russian MIG-35, and Dassault Rafale all manage it (maybe the Eurofighter Typhoon also, though it isn’t cheap). I’m sure the US could do even better if they’d concentrate on building a fighter, rather than a do-everything monstrosity like the F-35. I’m sure you can strap bombs to a super F-16 and use it in the attack role as well, once your stealth attack planes have taken out the local SAMS and your air superiority planes have taken out the fighters. Making a fighter plane with a bomb-bay for stealth, though, is a loser idea. If I were king of the world: build a delta winged F-16. The prototype already exists, and there was nothing wrong with the idea. It’s pathetic and disgusting that the national manufacturers simply can’t design even a small and cheap replacement for the ancient T-38 supersonic trainers. All of the postulated ones under consideration are foreign designs. The best one is actually a Russian design; the Yak-130.

The second need is a replacement for the F-117 for stealthy attack on radar and infrastructure. F-35 doesn’t even match the F-117 in this role. The F-22 almost does, but it is expensive and largely wasted on this role. I thought the Bird of Prey was a pretty good idea; something like that would serve nicely. Maybe one of the stealthy drones will serve this purpose. Whatever it is, you could build lots of them for the price of a few dozen F-35s.

Finally, we urgently need a decent attack plane for close air support. The F-35, and F-35B will be a titanic failure in this role. They have neither the armor nor endurance required for this. You could shoot it down with a large caliber rifle shooting rounds that cost $0.50. This one is dirt simple: even the A-10 is too complicated. Just build a propeller driven thing. Build a turboprop A-1 Skyraider. The Tucano is too small to cover all the bases. Presumably someone can still build a F4U Corsair or F6F Hellcat and stick a turboprop in it, some titanium plates around the cockpit, and shove a 30mm cannon in the schnozz. People build such things in their backyards. It shouldn’t be beyond the magnificent engineering chops of the present day “Skunk Works” at Lockheed or one of the other major manufacturers. Using inflation on the A-1 or calculating such a device as approximately 1/4 of a C-130, you should be able to build one in the $5m range and have 30-50 of them for each F-35 they replace.

The entire concept of “Stealth Fighter” is mostly a fraud. Stealth bombers and tactical attack planes have a reasonable use case. Stealth fighters are ridiculous. The F-35 is a gold plated turd which should be flushed down the toilet.

https://scottlocklin.wordpress.com/2017/01/20/shooting-down-stealthy-planes/
 
.
May be off topic but since you mention F-35, here is an article I came across while surfing the Net. I am not competent to comment on how accurate it is but it is certainly a food for thought.

Locklin on science
How to shoot down a stealth fighter
Posted in Design by Scott Locklin on January 20, 2017

Editorial note: I actually wrote most of this five years ago, but was reluctant to publish it for misguided patriotic reasons. Since people are starting to talk about it, I figure I might as well bring some more sense to the discussion.

I’ve already gone on record as being against the F-35. Now it’s time to wax nerdy as to why this is a dumb idea. I’m not against military spending. I’m against spending money on things which are dumb. Stealth fighters are dumb. Stealth bombers: still pretty dumb, but significantly less dumb.

f-35-turkey.png


I have already mentioned the fact that the thing is designed for too many roles. Aircraft should be designed for one main role, and, well, it’s fine to use them for something else if they work well for that. The recipe for success is the one which has historically produced good airplanes: the P38 Lightning, the Focke-Wulf Fw-190, the F-4, the F-16, the Su-27, and the A-10. All of these were designed with one mission in mind. They ended up being very good at lots of different things. Multi-objective design optimization though, is moronic, and gets us aircraft like the bureaucratic atrocity known as the F-111 Aardvark, whose very name doesn’t exactly evoke air combat awesomeness.

What is stealth? Stealth is a convergence of technologies which makes an aircraft electronically unobservable, primarily via Radar. The anti-radar technology is two-fold: the skin of the aircraft can be radar absorbent, but the main trick is to build the aircraft in a shape which scatters the radio energy away from the radar set which sent the signal. What is a fighter? A fighter is an aircraft that shoots down other aircraft. Fighters use guns, infrared guided missiles and radar guided missiles. Most modern radar guided missiles work by pointing the missile more or less in the target direction, illuminating the target with radar (from the jet, or from the missile itself; generally from the missile itself these days), and launching. The wavelength of the missile and jet radar is dictated by the physical size of the missile or jet. The main purpose of radar-resistant technology for a stealth fighter is avoiding being detected in the first place by enemy radar, but also defeating radar guided air to air missiles.

Of course, what nobody will tell you: the air to air radar guided missiles haven’t historically been very effective. The US has some of the best ones; the AMRAAM. They’ve only shot down 9 aircraft in combat thus far using this weapon; it has a kill probability of around 50% depending on who you ask. Previous generations of such missiles (the AIM-4, AIM-7 and Phoenix) were fairly abysmal. The AIM-4 was a complete failure. The AIM-7, also a turkey in its early versions with a 10% kill probability in the Vietnam War (later versions were better). The Phoenix never managed a combat success, despite several attempts, though it was somehow considered a program success anyway, mostly by paper pushing war nerds. By and large, the venerable IR guided sidewinder works best. Amusingly, the Air Force thought the beyond visual range radar guided air to air missile would make stuff like guns and dogfighting obsolete … back in the 1950s. They were so confident in this, most of the Vietnam era fighters didn’t come equipped with guns. They were completely wrong then. They’re almost certainly wrong now as well. Yet, that is the justification for fielding the gold plated turd known as the F-35; a fighter so bad, it can’t even out fight a 45 year old design.

Oh. Well, stealthy planes can defeat the IR missiles that end up being used most of the time, right? No, actually. The stealthy technology can’t really defeat such missiles, which can now home in on a target which is merely warmer than the ambient air. I could build such a sensor using about $40 worth of parts from Digikey. All aircraft are warmer than the ambient air, even “stealthy” ones. Friction is one of the fundamental laws of physics. So, if a stealth fighter is located at all, by eyesight, ground observers or low frequency radars or whatever: an IR missile is a big danger. Worse, the planes which the US is most worried about are Russian made, and virtually all of them come with excellent IR detectors built into the airframe itself. Airplane nerds call this technology IRST, and the Russians are extremely good at it; they’ve had world beating versions of this technology since the 1980s. Even ancient and shitty Russian jets come with it built into the airframe. The US seems to have mostly stopped thinking about it since the F-14. A few of the most recent F-18s have it strapped as an expensive afterthought to fuel tanks (possibly going live by 2018), and the F-35 (snigger) claims to have something which shoots sharks with laser beam eyes at enemy missiles, but most of the combat ready inventory lacks such sensors.

There is no immunity to gunfire, of course, so if you see a Stealth fighter with your eyeballs, and are close enough to draw a 6, you can shoot it down.

Now, it’s worth thinking a bit about the fighter role. What good is an invisible fighter? There are a couple of issues with the concept, which has never actually been usefully deployed in combat anywhere in all of history. It is also rarely spoken of. If you want to shoot down other jets with your stealth fighter, you have to find them first. To find them, the best way to do it is using radar. Maybe you can do this with AWACS. AWACS somewhat assume air superiority has already been established. They’re big lumbering things everyone can see, both because they have giant signatures to radar, and because they are emitting radar signals. Maybe you can turn on your stealth fighter’s radar briefly, and hope the enemy’s electronic warfare facilities can’t see it, or hope the passive radar sensors work. Either way, you had better hope it is a fairly big country, and it is dark outside, or someone could find your stealth fighter. People did a reasonable job of spotting planes with binoculars and telephones back in the day. Modern jets are a little more than twice as fast as WW-2 planes, but that’s still plenty of time to alert air defences. Invisibility to radar guided missiles is only of partial utility; if you’re spotted, and your aircraft isn’t otherwise superior in air combat (the F-22 is), you stand a decent chance of being shot down. So, for practical use as a fighter, stealthiness is only somewhat theoretically advantageous. It’s really the attack/bomber role where Stealthiness shines as a concept; mostly for taking out air defences on the ground.

The F-117 (which was a misnamed stealth attack aircraft, an actual use for the technology) was shot down in the Serbian war by a Hungarian baker by the name of Zoltan Dani. The way he did it was as follows: first, he had working radars. He did this by only turning them on briefly, and moving them around a lot, to avoid wild-weasel bombing raids. He also used couriers and land line telephones instead of radio to communicate with the rest of his command structure; he basically had no radio signal which could have been observed by US attack aircraft. He also had “primitive” hand tuned low-frequency radars. Low frequency means long wavelength. Long wavelength means little energy is absorbed by the radar absorbent materials, and, more importantly, almost none of it is scattered away from the radar receiver. Since the wavelength of a low-frequency radar is comparable to the size of the aircraft itself, the fine detail which scatters away modern centimeter-wavelength radars doesn’t have much effect on meter-wavelength radar. Mr Dani shot his SA-3 missiles up, guided it in using a joystick, and that was the end of the F-117, a trophy part of which now hangs in the garage of a Hungarian baker in Serbia.

zoltc3a1n-dani-the-serbian-commander-who-shot-down-f-117a-620x330.jpg

best hunting trophy ever

Similarly, if you want to shoot down stealth fighters, you need an integrated air defense system which uses long wavelength radars to track targets, and you dispatch interceptors to shoot them down with IR missiles, guided in by the air defense radar. Which is exactly how the Soviet Mig-21 system worked. It worked pretty well in Vietnam. It would probably work well against F-35’s, which are not as maneuverable as Mig-21’s in a dogfight. The old Mig-21 certainly costs less; I could probably put a Mig-21 point defense system on my credit cards. Well, not really, but it’s something achievable by a resourceful individual with a bit of hard work. A small country (I dunno; Syria for example) can afford thousands of these things. The US probably can’t even afford hundreds of F-35s.

Maybe the F-35 is going to be an OK replacement for the F-117? Well, sorta. First off, it is nowhere near as stealthy. Its supersonic abilities are inherently unstealthy: sonic boom isn’t stealthy, afterburners are not stealthy, and supersonic flight itself is pretty unstealthy. It does have an internal “bomb bay.” You can stuff one 2000lb JDAM in it (or a 1000lb one in the absurd VTOL F-35B). The F-117 had twice the capacity, because it was designed to be a stealth attack plane from the get go, and didn’t have to make any compromises to try to get it to do 10 other things. You could probably hang more bombs on an F-35’s ridiculously stubby little wings. But bombs hanging on a wing pylon make a plane non-stealthy. So do wing pylons. In clean, “stealthy” mode, the thing can only fly 584 miles to a target, making it, well, I guess something with short range and limited bomb carrying capability might be useful. The F-117 had twice the range. So, an F-35 is about a quarter as effective in the attack role as the F-117 was, without even factoring in the fact that it is only about a twice the radar cross section of an F-117. It kind of sucks how the F-35 costs a lot more than the F-117, which was designed for and demonstrably more useful for this mission. It’s also rather confusing to me as to why we need 2000 such things if they ain’t fighters with a significant edge against, say, a late model F-16 or Superhornet. But then, I’m not a retired Air Force General working at Lockheed. I’m just some taxpayer in my underpants looking on this atrocity in complete disbelief.

There are three things which are actually needed by Air Force procurement. We have a replacement for the F-15 in air superiority role: the F-22. It works, and it is excellent; far more effective than the F-35, cheaper and stealthier to boot. We can’t afford many of them, and they have problems with suffocating their pilots, but we do have them in hand. If it were up to me, I’d keep the stealthy ones we got, make them attack planes, and build 500 more without the fancy stealth paint for air superiority and ground attack. It will be cheaper than the F-35, and more capable. Everyone will want to “update the computers.” Don’t.

The most urgent need is for a replacement for the F-16; a small, cheap fighter plane that can be used in the interceptor/air superiority role. The US needs it. So do the allies. It doesn’t need to be stealthy; stealth is more useful in the attack role. Building a better F-16 is doable: the Russian MIG-35, and Dassault Rafale all manage it (maybe the Eurofighter Typhoon also, though it isn’t cheap). I’m sure the US could do even better if they’d concentrate on building a fighter, rather than a do-everything monstrosity like the F-35. I’m sure you can strap bombs to a super F-16 and use it in the attack role as well, once your stealth attack planes have taken out the local SAMS and your air superiority planes have taken out the fighters. Making a fighter plane with a bomb-bay for stealth, though, is a loser idea. If I were king of the world: build a delta winged F-16. The prototype already exists, and there was nothing wrong with the idea. It’s pathetic and disgusting that the national manufacturers simply can’t design even a small and cheap replacement for the ancient T-38 supersonic trainers. All of the postulated ones under consideration are foreign designs. The best one is actually a Russian design; the Yak-130.

The second need is a replacement for the F-117 for stealthy attack on radar and infrastructure. F-35 doesn’t even match the F-117 in this role. The F-22 almost does, but it is expensive and largely wasted on this role. I thought the Bird of Prey was a pretty good idea; something like that would serve nicely. Maybe one of the stealthy drones will serve this purpose. Whatever it is, you could build lots of them for the price of a few dozen F-35s.

Finally, we urgently need a decent attack plane for close air support. The F-35, and F-35B will be a titanic failure in this role. They have neither the armor nor endurance required for this. You could shoot it down with a large caliber rifle shooting rounds that cost $0.50. This one is dirt simple: even the A-10 is too complicated. Just build a propeller driven thing. Build a turboprop A-1 Skyraider. The Tucano is too small to cover all the bases. Presumably someone can still build a F4U Corsair or F6F Hellcat and stick a turboprop in it, some titanium plates around the cockpit, and shove a 30mm cannon in the schnozz. People build such things in their backyards. It shouldn’t be beyond the magnificent engineering chops of the present day “Skunk Works” at Lockheed or one of the other major manufacturers. Using inflation on the A-1 or calculating such a device as approximately 1/4 of a C-130, you should be able to build one in the $5m range and have 30-50 of them for each F-35 they replace.

The entire concept of “Stealth Fighter” is mostly a fraud. Stealth bombers and tactical attack planes have a reasonable use case. Stealth fighters are ridiculous. The F-35 is a gold plated turd which should be flushed down the toilet.

https://scottlocklin.wordpress.com/2017/01/20/shooting-down-stealthy-planes/

Fanboy article. The F-35 has its problems, but his 'analysis' if you could call it that and proposed solutions to problems are simply idiotic.
 
. .
Good diagrams. Derivatives like ADSI exist which can circumvent the Mach2 problem. Implementing it in design configuration on a fighter jet is still lacking. Chinese maybe working on a solution here - j10C.
f14-detail-airintake-01.gif


It's this ability, or rather requirement that isn't present in DSI, DSI only has a static configuration. And it's designed to work at all speeds up to it's stated maximum without the need for complex, heavy and costly moving parts. That's why the F-35, JF-17, F-16's DSI model, all are stated to be limited to mach 2 or below. The DSI inherently rapidly loses efficiency on these aircraft at speeds approaching mach 2.
 
. . .
Status
Not open for further replies.
Back
Top Bottom