GSLV-D3 failure won't affect Chandrayaan-2
T.S. Subramanian
We have a long way to go and we will do that in the coming year, says ISRO chief Radhakrishnan
No plans to recover GSLV-D3 stages from the Bay of Bengal: ISRO chief
Cryogenic technology is the most complex of all types of rocket propulsion: Ramakrishnan
SRIHARIKOTA: The failure of the GSLV-D3 mission on Thursday will not have an impact on the Chandrayaan-2 mission scheduled for 2013, according to K. Radhakrishnan, Chairman, Indian Space Research Organisation (ISRO).
The GSLV-D3, which was launched amidst high hopes, having been powered by an indigenous cryogenic engine for the first time, ended in failure after the cryogenic engine failed to ignite. As per the ISRO's plans, it is a GSLV powered by an indigenous cryogenic engine that will put Chandrayaan-2 in orbit. The Chandrayaan-2 mission will also put a lander-cum-rover on the lunar soil.
The GSLV-D3 mission had three objectives: to develop and launch an indigenous cryogenic stage with the engine and associated systems; to evaluate the performance of the indigenous cryogenic stage and engine; and to put the communication satellite GSAT-4 into orbit. Only the first objective was achieved, the ISRO Chairman said.
S. Ramakrishnan, Director (Projects), Vikram Sarabhai Space Centre, Thiruvananthapuram, said the cryogenic technology was the most complex of all types of rocket propulsion. France and the U.S. had also met with failures in using cryogenic engines. “Failures in cryogenic technology are not unusual. It is difficult to test the cryogenic engine even on the ground. We are disappointed. But we will overcome [the problems],” said Mr. Ramakrishnan
The GSLV-D3 rocket, including the indigenous cryogenic stage, cost Rs.180 crore. The ISRO spent Rs.36 crore to develop its own cryogenic stage with the engine. GSAT-4 cost Rs.130 crore.
Dr. Radhakrishnan said the cryogenic technology, which enabled communication satellites to be put into a geo-synchronous transfer orbit at an altitude of 36,000 km, was a highly complex technology. The GSLV-D3 mission was not successful and “we have to face it,” he said.
“We have a long way to go and we will do that in the coming year [by launching GSLV with an indigenous cryogenic engine] … We have to work with dedication and I am sure Team ISRO will do it.” He refuted suggestions that there was a problem with the design of the GSLV because three out of the six GSLV missions from 2001 had failed.
GSLV-D3 is the sixth GSLV mission.
Dr. Radhakrishnan said there were no plans to recover the GSLV-D3 stages from the Bay of Bengal as the ISRO did when its GSLV flight failed in 2006.
Next flight
The next GSLV flight would take place in September this year but it would use a Russian cryogenic engine. It would put into the orbit a communication satellite named GSAT-5B. Another GSLV flight, also powered by a Russian cryogenic engine, would put GSAT-6 into the orbit.
PSLV launch
Meanwhile, a core-alone Polar Satellite Launch Vehicle (PSLV) of the ISRO is scheduled to lift off from the first launch pad at Sriharikota between May 8 and 10. It has already been fully integrated at the first launch pad.
It will put Cartosat-2B, an Algerian satellite, two nano satellites from the Norwegian defence establishment and Switzerland, and a Studsat into the orbit.
The Studsat has been built by students of colleges in Hyderabad and Bangalore.
The Hindu : Front Page : “GSLV-D3 failure won't affect Chandrayaan-2”