nitesh
SENIOR MEMBER
- Joined
- May 8, 2008
- Messages
- 3,261
- Reaction score
- 0
Some info on Astra, old but at least some info about it
Astra AAM
The Astra is described as a beyond-visual-range (BVR) air-to-air missile, which uses a terminal active radar-seeker to find targets and a mid-course internal guidance system with updates, to track targets. The on-board ECCM capability allows it to jam radar signals from an enemy surface-to-air battery, ensuring that the missile is not tracked or shot down. This indigenous missile is intended to have performance characteristics similar to the R-77RVV-AE (AA-12), which currently forms part of the IAF's missile armoury. The missile is designed to be used on all fixed-wing combat aircraft in service with the IAF and also with the future Light Combat Aircraft. The Mirage 2000H has been designated as the first potential platform for the Astra when the weapon enters service at the end of this decade.
The missile is 3.8 metres long and is said to be configured like a longer version of the Super 530D, narrower in front of the wings. Astra uses a HTPB solid-fuel propellant and a 15 kg HE (high-explosive) warhead, activated by a proximity fuse. The missile has a maximum speed of Mach 4+ and a maximum altitude of 20 km. The missile can reportedly undertake 40 g turns close to sea level, when attacking a manoeuvring target. Although designed to use a locally-developed solid fuel propellant, DRDO is also looking at rocket/ramjet propulsion to provide greater range and enhanced kinematic performance. On 25 July 2001 in Parliament, then-incumbent Defence Minister Jaswant Singh said that a feasibility study for the Astra has commenced, after the completion of which a project for development of the Astra is planned to be undertaken. Development of this missile is likely to take about seven to eight years. Unconfirmed reports state that a first flight is expected sometime in 2003.
Robert Hewson, editor of Jane's Air Launched Weapons, in a March 2003 issue of Jane's Defence Weekly stated, "The basic Astra design uses a metallic airframe with a long low aspect-ratio wing and a single-stage smokeless rocket motor. After launch, the missile will use a combination of inertial mid-course guidance and/or data-linked targeting updates before it enters its terminal acquisition phase. In a head-on engagement, the Astra will have a maximum range of 80 km. The missile's onboard radio-frequency seeker has been largely designed in India but incorporates a degree of outside assistance, according to DRDO sources. It will have an autonomous homing range of 15 km. The missile's warhead is a pre-fragmented directional unit, fitted with a proximity fuze. A radar fuze already exists for the Astra, but the DRDO is currently working on a new laser fuze. According to the DRDO, the first ground-launched aerodynamic trials of the Astra will begin within the first half of this year. This will be followed by the next phase of controlled in-flight test launches."
Astra AAM
The Astra is described as a beyond-visual-range (BVR) air-to-air missile, which uses a terminal active radar-seeker to find targets and a mid-course internal guidance system with updates, to track targets. The on-board ECCM capability allows it to jam radar signals from an enemy surface-to-air battery, ensuring that the missile is not tracked or shot down. This indigenous missile is intended to have performance characteristics similar to the R-77RVV-AE (AA-12), which currently forms part of the IAF's missile armoury. The missile is designed to be used on all fixed-wing combat aircraft in service with the IAF and also with the future Light Combat Aircraft. The Mirage 2000H has been designated as the first potential platform for the Astra when the weapon enters service at the end of this decade.
The missile is 3.8 metres long and is said to be configured like a longer version of the Super 530D, narrower in front of the wings. Astra uses a HTPB solid-fuel propellant and a 15 kg HE (high-explosive) warhead, activated by a proximity fuse. The missile has a maximum speed of Mach 4+ and a maximum altitude of 20 km. The missile can reportedly undertake 40 g turns close to sea level, when attacking a manoeuvring target. Although designed to use a locally-developed solid fuel propellant, DRDO is also looking at rocket/ramjet propulsion to provide greater range and enhanced kinematic performance. On 25 July 2001 in Parliament, then-incumbent Defence Minister Jaswant Singh said that a feasibility study for the Astra has commenced, after the completion of which a project for development of the Astra is planned to be undertaken. Development of this missile is likely to take about seven to eight years. Unconfirmed reports state that a first flight is expected sometime in 2003.
Robert Hewson, editor of Jane's Air Launched Weapons, in a March 2003 issue of Jane's Defence Weekly stated, "The basic Astra design uses a metallic airframe with a long low aspect-ratio wing and a single-stage smokeless rocket motor. After launch, the missile will use a combination of inertial mid-course guidance and/or data-linked targeting updates before it enters its terminal acquisition phase. In a head-on engagement, the Astra will have a maximum range of 80 km. The missile's onboard radio-frequency seeker has been largely designed in India but incorporates a degree of outside assistance, according to DRDO sources. It will have an autonomous homing range of 15 km. The missile's warhead is a pre-fragmented directional unit, fitted with a proximity fuze. A radar fuze already exists for the Astra, but the DRDO is currently working on a new laser fuze. According to the DRDO, the first ground-launched aerodynamic trials of the Astra will begin within the first half of this year. This will be followed by the next phase of controlled in-flight test launches."