Turkish scientist 'ultra thin' invention
Izmir Institute of Technology (IYTE) Photonics Department Assoc. Dr. Under the leadership of Hasan Şahin, the delegation, including scientists from England and Belgium, found the formula for producing "ultra thin" materials from non-layered materials such as diamonds, gold and aluminum to be used in the field of nanotechnology.
The formula, which has been used in many areas such as flexible phones, ultra-fast charging of batteries and to date has brought a new dimension to the ultra-thin materials produced from layered materials such as coal carbon, is expected to pave the way for new inventions.
The delegation, including Andre Geim, Francois Peeters and Rahul Nair, who had previously found the ultra-fine material "Graphene" by decomposing coal carbon and received the Nobel Prize for this work, began to produce ultra-fine materials a year ago under the guidance of Şahin.
In this study, the delegation aimed at achieving the ultra-fine state of layered materials, as well as the ultra-fine state of non-layered materials such as diamonds, gold and aluminum.
The final article of the delegation, which achieved this with the formula they developed, attracted great interest in the scientific world.
"The recipe we will bring will lead to the discovery of new materials"
Assoc. Dr. Sahin, AA correspondent, said the scientists in the study in the last 10 years, the most known names in their fields, he said.
Noting the importance of Andre Geim's journey, which started with the synthesis of graphene in 2004, Sahin said, sent The synthesis of graphene, which we call graphite in material science and which we know as coal, has very surprising and incredible properties, has opened a whole new way. In terms of technology, the presence of a single-atom-thick ultra-thin graphene, its incredible mechanical properties, its electrically very interesting, triggered work in this area. The whole world has realized how important ultra-thin materials are. " he said.
Graf from voicing Sahin then rolled up their sleeves to produce ultra-thin material of the non-layered structure, the idea of the project came stressed from Turkey.
Pointing out that there will be advances in the field of nano technology with the formula developed, "developing nano technology needs. These can be nano-coating, nano-scale drugs. Electricity can be very good conducting nano materials or transparent light can be very good. Transparent nano materials can not count. nano technology in the area will need material. The recipe we will bring will eliminate the limits and will lead to the discovery of new materials. " used the phrase.
"Graphene paves the way for innovation in areas like bendable phones"
Scientists Andre Geim and Konstantin Novoselov found in 2004 the "Graphene", a revolutionary material in material science with the separation of coal and carbon. Graphene has paved the way for innovation in many areas such as technology-bendable phones and ultra-fast charging of batteries. Scientists won the Nobel Prize for Physics in 2010 with this invention.
Under the leadership of the Turkish scientist Sahin, the study is foreseen to make ultra-thin materials other than coal and similar layered materials. Graphene-like ultra-thin new materials will pave the way for new discoveries.
https://www.aa.com.tr/tr/bilim-teknoloji/turk-bilim-insanindan-ultra-ince-bulus-/1606698
BAIBU academicians made superconducting wire from boron mine
Bolu Abant Izzet Baysal University (BAIBU) Faculty of Arts and Sciences Department of Physics by scientists working in the boron mine was produced by using super conductive wire. Professor of Physics Dr. Ibrahim Belenli under the supervision of 5 academicians continue their work started in 2013.
After approximately 7 years of process, the superconducting wire produced from boron mine, used in MR devices and wind turbines, was sent abroad for testing. Through the wire from the tests performed successfully academics Scientific and Technological Research Council of Turkey (TUBITAK) "Project Performance Award" was awarded.
Professor Dr. Belenli, AA correspondent, said in a statement about the study, they were very happy with the award received from TUBITAK'tan said.
They are working with local production as much as possible. Dr. Hakan Yetiş, Assoc. Dr. Mustafa Akdogan, Faculty Member Fırat Karaboğa and Dr. Belenli said that the signature of the faculty member Asaf Tolga Ülgen, "The main focus of our project will be the domestic production of almost all of the devices we will use. With domestic production in the future, we will have the opportunity to develop more." said.
Belenli stated that important outputs have been put forward as a result of scientific R & D studies, the product obtained, minus 250-270 degrees is a superconducting wire that passes high currents, he said.
"Carried current without resistance"
Belenli, which produces a wire that passes very high currents in 4.2 kelvin without any resistance, said, "We took these wires abroad and tested there. The test results came out quite well. They can give a maximum current of 150 amperes in the system there. Even though they use all of these wires, our wires did not come out of super conductivity. that is, he carried the current without resistance. " used the phrase.
Belenli, technologically to get a distance and to produce something to go towards the workshop and factory equipment, he said.
"The mass production of superconducting wires has been around the world for a long time." Belenli said:
"But similar products of our product have just begun to be used. These super conductor wires do the work that cannot be done with copper wires and other conductors. For example, all of the MR devices are used as super conductor wires. The track coil that we are trying to do is the winding turbines and wind turbines in very large electric motors. coils are used. in Turkey, MgB2 ie magnesium-boron-based superconducting wires are not serious about running another institution, I know. If it is not in our rubric. " said.
Belenli noted that all their aims are mass production, "We show our efforts to make the country go towards high value-added products. All our efforts are to go into mass production and become high value-added technological products." said.
https://www.aa.com.tr/tr/bilim-tekn...or-madeninden-super-iletken-tel-yapti/1646294
Developed nano material to increase the efficiency of solar cells
Nanotechnology Application and Research Center (NÖHÜNAM), which was established within the body of Niğde Ömer Halisdemir University, has been conducting studies on carbon-based nanomaterials since 2014.
Within the scope of the studies, thanks to the nano-size graphene film developed with domestic facilities, the efficiency of silicon-based solar cells was increased by about 20 percent.
NÖHÜNAM, who conducts studies on graphene, Faculty of Science and Letters Faculty of Physics Assoc. Dr. Recep Zan told AA correspondent that the center is one of the rare centers with its infrastructure to compete with many national and international research centers and has industrial R & D capacity on renewable energy.
Zan stated that they have been carrying out studies on carbon based nano materials in the center for about 5 years. I worked under the supervision of Prof. Konstantin Novoselov, who received the physics award. Graf Graphene is about one billionth of a meter thick. he said.
Zan said that graphene can be used in electronic circuits, touch screens, power generation and storage, surface coatings and healthcare.
"In our laboratories, we are able to produce graphene by more than one method. In this context, we produce and characterize graphene both as an ultra thin film by chemical vapor deposition technique (CVD) and by chemical separation technique in powder form. CVD device is a specially designed furnace system and The graphene we produce is such a thin and transparent material that we cannot see with our eyes, for this we need microscopes. We can transfer the graphene film we produce on the copper surface to the desired place with a few chemical processes. "
Efforts are underway to use graphene in fuel cells and armor coatings
Zan stated that they applied the graphene films they produced to the silicon-based solar cells produced in the center and they achieved a significant increase in productivity.
"The material used as a transparent and conductive layer on the top layer of solar cells is very expensive and fragile. Graphene produced by us has low cost and high performance compared to other material. Especially in solar cells where we produce graphene with domestic facilities, about 20 percent efficiency increase compared to the cells that do not use graphene. Thanks to this increase, more energy can be obtained from the solar panels covered in the same area, and the same energy can be obtained by using less panels.The efficiency increase obtained by the materials used in the silicon-based solar cells has reached to the saturation point. We have shown that a significant increase in yield can be achieved in cells. "
Zan, with the contribution of the university to realize that the local facilities, noting that "
Our studies are supported by TUBITAK and TUBA also in our laboratories, different types of graphene solar cells, fuel cells, armor coatings, organic and inorganic waste recycling areas continue to work on." shared information.
https://www.aa.com.tr/tr/bilim-tekn...ni-artiran-nano-malzeme-gelistirdiler/1651616
In the ASELSAN Research Center, the world's first magnetic particle imaging prototype system with open, linear scans was developed and the first image was taken.
In the prototype system, two different phantoms representing a healthy coronary vessel with magnetic nanoparticles and a coronary vessel with 50 percent contraction were visualized.
According to the similarities in the literature, the system has advantages such as open edges for interventional applications, high sensitivity imaging in wide area, three dimensional imaging with single channel receiver / transmitter and adjustable aperture height thanks to special magnetic field scanning method.
The MPG Prototype System is planned to carry out research and development studies in both biosafety and health technologies. Acquisition of knowledge on the subject and obtained intellectual property rights, Turkey's health and aims to contribute to the production and export of advanced technology Biodefense sector.
MPG, which is a very new medical imaging method, has advantages such as not applying ionizing radiation, having high time and space resolution, and not being affected from the tissue.
With the possibilities of nanotechnology, MPG has a wide range of applications such as angiography, interventional radiology, tumor imaging and therapy, stem cell tracking, targeted drug therapy and drug dosage determination, focused heating therapy, functional brain imaging, imaging of internal bleeding, detection of different agents in biosavage. areas.
Pre-clinical studies on MPG are continuing in the world. There is no commercial product used in the clinic yet.
ASELSAN Research Center, Turkey-Germany bilateral cooperation within the scope of TUBITAK, Bilkent University, University of Lübeck and nano4ımaging company with the study carried out in real-time interventional surgical tools (eg angiography for catheters) real-time rendering techniques for tracking MPG in the body and rapid system calibration methods were developed.
In parallel with this study, a self-funded project was carried out and a new hardware architecture with various advantages was proposed and its prototype was developed. Within the scope of the project, 3 international patent applications have been filed, 4 scientific journal articles have been published and 5 papers have been presented at various conferences.
https://www.star.com.tr/teknoloji/a...ent-basvurusuyla-tescillenecek-haber-1489687/