AmirPatriot
SENIOR MEMBER
- Joined
- Dec 13, 2015
- Messages
- 4,156
- Reaction score
- 7
- Country
- Location
Follow along with the video below to see how to install our site as a web app on your home screen.
Note: This feature may not be available in some browsers.
@AmirPatriot
Limitations always happen if you compete with a vastly superior opponent. Iran can't create a F-22/F-35, if it could it would still be behind and again if it could it would never reach the numbers the Americans have.
Never go for something that is impossible. Never let the rules of the battle be dictated by the opponent.
The F-35 is a all-rounder, the Qaher less.
It has no supersonic dash capability or super cruise? Then it should have higher kinematic power AAMs to compensate supersonic high altitude AAM release. It has too low thrust to climb like a interceptor? Same thing, higher kinematic performance AAMs are necessary.
No supersonic dash capability for maneuvering in dogfight conditions? Again let the weapon do it, develop a high kinematic performance TVC IIR AAM to avoid such dogfights.
Qaher can't carry out deep strikes into enemy airspace and remain survivable? Let ballistic missiles do that job in highly protected airspace.
Qaher cant carry as many AAMs as a F-22, more so because it uses larger missile to compensate its speed/altitude deficit? Operate two Qaher for one F-22.
Just try to reach your goals, don't compete like South Koreans, Indians and Turks in a field where they will never catch up to the Americans anyway. Just concentrate on the results you want to have.
In the operation regime I described, the Qaher has no important deficiency. A MIG-29 can be for ~ 5 minutes on afterburner, supersonic over target location. A F-16 maybe 10 minutes. However the B-2 was designed to fly at mach 0,9 at sea level to OUTRUN such aircraft like MIG-29 tying to hunt it down, just by maintaining a continuous high speed with high range performance after 10 minutes the hunter must turn back to its base because the delta in speed is too low and fuel consumption on afterburner too high.
These are real operational conditions and the art of the B-2 designers was to realize that this is enough to achieve the objective, no supersonic capability necessary.
Let me itemize my response:@Penguin
So let me see your point are the following:
Qaher is not designed to make use of ground effect? Its vertical wing position is a problem? No other GEV have such positioned wings? A low winged design plus downward cranked wingtips would be feasible with a normal landing gear?
Its special wingtip design is not indicative for GE specialization? Its not a typical GE design trait to have downward cranked wingtips?
Tornado couldn't do to 15-20m altitude 30 years ago, as necessary for GE usage of a specially GE designed aircraft like the Qaher? If the Tornado could do with state of the art solid state technology of the 70's, Qaher can't to much better with electronically scanned radars, SAR, high resolution digital optics, high resolution digital 3D maps, all stored on board on memory?
Tomahawk did not make use of ground effect while flying at 30m, 30 years ago? So it was able to fly at 30m, 30 years ago with expandable hardware, while the Qaher would not be able to do 15-20m today?
If that's what you trying to say, read my posts on this page, my answers are stated.
A similar technique as what PEED described for flying low, pop up fire the missile and again dive low was experienced by Iraq's MIGs that had the same technological gap compared to Iranian F-14s and also it was limited, where adopted, it was successful.Well personally I don't think we should limit ourselves to only the Americans. The Saudis and Israelis are also a threat too, on a lower tier than the Americans.
In all honesty I don't think the Qaher is even meant to go against any fighters, let alone the F-22. But it seems too small to carry enough fuel to sustain that high subsonic dash.
To my knowledge the Iraqi MiGs didn't have the proper sensors to use this effectively. But Iraqi Mirages did, and did manage to shoot down a small number of F-14s.A similar technique as what PEED described for flying low, pop up fire the missile and again dive low was experienced by Iraq's MIGs that had the same technological gap compared to Iranian F-14s and also it was limited, where adopted, it was successful.
Against Saudi's and Israelis I think our ballistic missiles will be the best weapon. Q-313 in my opinion will be used for sea/shore line attack, ground strike and limited local air defense / access denial missions.
If they can build it cheap and fast like what they did with ballistic missiles
High precision ballistic missiles would be used to break the defense, take out HQs, airbases, communication and radars. Once the defensive system is weak enough aircraft and drones can do the mass of strikes against lower value targets.
This can happen step by step, km per km via missiles (TBM) like Fateh and Qiam only. The center will always be better defended than the peripherie. Qaher can start operations beyond borders once the defense system close to the border has become just weak enough via TBM.
Isn't that a situational type of scenario though? Are we assuming that Iran does indeed have a plentiful amount of MRBM's and cruise missiles at their dispense.
Curious I am about the actual amount of missiles iran would need to be effect in a hot war. It has to in 500-1000 range right?
Given the interceptors and what not.
High precision ballistic missiles would be used to break the defense, take out HQs, airbases, communication and radars. Once the defensive system is weak enough aircraft and drones can do the mass of strikes against lower value targets.
This can happen step by step, km per km via missiles (TBM) like Fateh and Qiam only. The center will always be better defended than the peripherie. Qaher can start operations beyond borders once the defense system close to the border has become just weak enough via TBM.
A ground effect vehicle (GEV) (aka WIG) is a vehicle that is designed to attain sustained flight over a level surface (usually over the sea), by making use of ground effect. Although they may look and have related technical characteristics similar to seaplanes, ground effect vehicles are not aircraft, as they are unable to fly freely in the air. They are also dissimilar from hovercraft or hydrofoils, as they do not have any contact with the surface of the water. Ground effect vehicles constitute a completely unique class of transportation.
A ground effect vehicle needs some forward velocity to produce lift dynamically and the principal benefit of operating a wing in ground effect is to reduce its lift-dependent drag. The basic design principle is that the closer the wing operates to an external surface such as the ground, said to be in ground effect, the more efficient it becomes.
An airfoil passing through air increases air pressure on the underside, while decreasing pressure across the top. The high and low pressures are maintained until they flow off the ends of the wings, where they form vortices which in turn are the major cause of lift-induced drag—normally a large portion of the drag affecting an aircraft. The higher the aspect ratio of the wing (that is, the longer and skinnier it is), the less induced drag created for each unit of lift and the greater the efficiency of the particular wing. This is the primary reason gliders have long and skinny wings.
Placing the same wing near a surface such as the water or the ground has the effect of greatly increasing the aspect ratio, but without having the complications associated with a long and slender wing, so that the short stubs on an Ekranoplan can produce just as much lift as the much larger wing on a transport aircraft, though it can only do this when close to the earth's surface. Once sufficient speed has built up, some GEVs may be capable of leaving ground effect and functioning as normal aircraft until they approach their destination. The distinguishing characteristic is that they are unable to land or take off without a significant amount of help from the ground effect cushion, and cannot climb until they have reached a much higher speed.
https://en.wikipedia.org/wiki/Ground_effect_vehicle
IMHO, Qaher 313 is not a Ground Effect Vehicle.
Principle of ground effect
When an aircraft flies at a ground level approximately at or below the length of the aircraft's wingspan or helicopter's rotor diameter, there occurs, depending on airfoil and aircraft design, an often noticeable ground effect. This is caused primarily by the ground interrupting the wingtip vortices and downwash behind the wing. When a wing is flown very close to the ground, wingtip vortices are unable to form effectively due to the obstruction of the ground. The result is lower induced drag, which increases the speed and lift of the aircraft. A wing generates lift by deflecting the oncoming airmass (relative wind) downward. The deflected or "turned" flow of air creates a resultant force on the wing in the opposite direction (Newton's 3rd law). The resultant force is identified as lift. Flying close to a surface increases air pressure on the lower wing surface, nicknamed the "ram" or "cushion" effect, and thereby improves the aircraft lift-to-drag ratio. The lower/nearer the wing is with regards to the ground, the more pronounced the ground effect becomes. While in the ground effect, the wing requires a lower angle of attack to produce the same amount of lift. If the angle of attack and velocity remain constant, an increase in the lift coefficient ensues, which accounts for the "floating" effect. Ground effect also alters thrust versus velocity, where reduced induced drag requires less thrust in order to maintain the same velocity.
Low winged aircraft are more affected by ground effect than high wing aircraft. Due to the change in up-wash, down-wash, and wingtip vortices there may be errors in the airspeed system while in ground effect due to changes in the local pressure at the static source.
Another important issue regarding ground effect is that the makeup of the surface directly affects the intensity; this is to say that a concrete or other smooth hard surface will produce more effect than water or broken ground..
https://en.wikipedia.org/wiki/Ground_effect_(aerodynamics)
Did someone just suggest this is a low level penetrator? Like the Panavia Tornado, a multirole, twin-engined aircraft designed to excel at low-level penetration of enemy defences?
Variable wing geometry had been desired from the project's start. Advanced navigation and flight computers, including the then-innovative fly-by-wire system, greatly reduced the workload of the pilot during low-level flight and eased control of the aircraft. The Tornado incorporates a combined navigation/attack Doppler radar that simultaneously scans for targets and conducts fully automated terrain-following for low-level flight operations; being readily able to conduct all-weather hands-off low-level flight was considered one of the core advantages of the Tornado
If F313 is designed to make use of ground effect, why not a low wing design, like F5, HESA Azarakash (model 2007) or HESA Saeqeh, or even a mid-body wing like HESA Azarakash (model 2008)?
To use ground effect, it needs to fly at 8-10 meters (F-5 and F16 span) altitude continuously..... in Iran's mountenous terrain.
This is Tornado flying low at high speed (probably about 80 m).
Here Typhoon (with flight heights mentioned)
http://www.dailymail.co.uk/news/art...-jets-fly-formation-each.html#v-3084998485001
F-111 low level oops
Which is exactly what I said.1st all Aircrafts are effected by Ground Effect during takeoff and landing and although the F-313 wings & design may effect the altitude of which this takes place but overall the F-313 is NOT a Ground Effect Vehicle! It is just an subsonic fighter whos wing design gives it greater stability at lower speeds and this allows it to fly safely at lower altitudes then regular wing designs BUT at the same time it reduces maneuverability at higher speeds!
Regardless, this Aircrafts optimal cruise altitude will be closer to it's maximum flight altitude than to the ground!
If Ground Effect was capable of increasing a Jet Powered aircrafts range the US & other countries in the world would have used it to develop anti-ship cruise missiles that only use ground effect a long time ago.
2ndly The greatest threat to Aircraft built for low altitude flight and engagement are AAA and that's why Aircrafts like the A-10 & Su-25 are so heavily armored so if your going to put an expensive Jet Engine on an Aircraft that uses expensive jet fuel for low altitude flight & engagement then you need to armor it up or else the cost vs benefit analysis of the Aircraft will not make much sense and in such a case you would be better off building 6 cruise missiles at a fraction of the price than such an Aircraft!
Not all fighter designs are successful but that still doesn't stop countries from building and experimenting with different designs.
Hi
Just looking at qaher platform and it's probably future development such as re-design of wing totally and vertical stablizers and increasing air-inlet cross section and scaling up it's platform for more powerful engines like j79,rd33,rd93 ,...and ....
Seems it is a well chosen platform not only as subsonic low altitude close air support fighter but also as interdictor or multirule fighter or bomber.
It is at least a good testbed fighter and can have better future.
Wing array can be change easily
Center of mass can be change easily
Airfoil also
Missile releasing mechanism not very difficult to make in Iran
Just looking at it's landing gear design, it is very logical choose to have heavy avionics at nose and heavy weapons in body bay.
The front landing gear has more distance to front nose as compared to f5,which give more space for more avionics.
Without its future developments, Just compare it with f5, seems it is an economical and logical choose