What's new

Pakistan F-16 Discussions 2

THE FIRST AND THE FURIOUS
June 7, 2002

Squadron Leader Zulfiqar and Squadron Leader Afzal (GIBS) of No. 9 MR Sqn destroy an intruding UAV (Searcher-II) of IAF on the night of 7th June, 2002, during Ops Sentinel. This was the first kill of a UAV by any fighter aircraft in the world.


Indian external affairs officials admitted losing contact with a UAV in that region, but described it as a routine matter. In a statement issued to the Indian Parliament on 18 July 2002 then Indian Raksha Mantri (Defence Minister) George Fernandes acknowledged the UAV being "shot down by a Pakistan Air Force aircraft"


Portion of the UAV tail section is now on display outside PAF 9 Sqn home. The plaque credits - Sqn Ldr Zulfiqar Ayub and Sqn Ldr Afzal Aman for the kill, indicating that the fighter was a F-16B.

PAF was then operating in an alerted state - Operation Sentinel. Note that IAF does not paint any roundels or national markings on UAV.




Clearly visible here on the control surfaces of the aircraft is the serial number: T-2004.




A PAF Officer displays the wreckage to two curious pilots from the Chakala based No. 6 Squadron.



Remains of the AIM-9L seeker that is suspected to have downd the UAV.


60873295.jpg


Badging recovered from the wreck clearly mentions the aircraft's origins: "Israel Aircraft Industries Ltd. Electronics Division Tamam".






:flame:


:pakistan:
 
Last edited:
.
THE FIRST AND THE FURIOUS
June 7, 2002

Squadron Leader Zulfiqar and Squadron Leader Afzal (GIBS) of No. 9 MR Sqn destroy an intruding UAV (Searcher-II) of IAF on the night of 7th June, 2002, during Ops Sentinel. This was the first kill of a UAV by any fighter aircraft in the world.

Shouldn't it be FAST and FURIOUS? or is there a joke hidden in the twist.
In any case it is interesting to hear that shooting down of Indian flying objects by PAF is routine matter for Indian MoD

Irony of record... Israeli UAV flying in Pak airspace shoot down by Pakistan.
Not many in the world know about it.
 
Last edited:
.
Shooting down a UAV is not an easy job.You have to slow down jet as the UAV flies extremely slow at normal speed the jet would fly past UAV before it even gets a lock on UAV.The jet has to come to near stall speeds to get lock on UAV.
 
.
☪☪☪☪..You forgot Air Brakes-Inflight breaks.
 
.
hi

can any body update me ..how much time require to build the one f-16.

secondly when turkey will deliver mlu kits.

thanks
:victory:
 
.
Turkey will deliver us upgrades F-16 and MLU kits will be delivered to TAI directly by USA.
 
.
☪☪☪☪;914865 said:
Shooting down a UAV is not an easy job.You have to slow down jet as the UAV flies extremely slow at normal speed the jet would fly past UAV before it even gets a lock on UAV.The jet has to come to near stall speeds to get lock on UAV.

Ah.... now i know.....the twist was deliberate.
 
.
MiG-29 Fulcrum Versus F-16 Viper

The baseline MiG-29 for this comparison will be the MiG-29A (except for 200 kg more fuel and an internal jammer, the MiG-29C was not an improvement over the MiG-29A), as this was the most widely deployed version of the aircraft. The baseline F-16 will be the F-16C Block 40. Although there is a more advanced and powerful version of the F-16C, the Block 40 was produced and fielded during the height of Fulcrum production.

A combat loaded MiG-29A tips the scales at approximately 38, 500 pounds. This figure includes a full load of internal fuel, two AA-10A Alamo missiles, four AA-11 Archer missiles, 150 rounds of 30mm ammunition and a full centerline 1,500 liter external fuel tank. With 18,600 pounds of thrust per engine, this gives the Fulcrum a takeoff thrust-to-weight ratio of 0.97:1. A similarly loaded air-to-air configured F-16 Block 40 would carry four AIM-120 AMRAAM active radar-guided missiles, two AIM-9M IR-guided missiles, 510 rounds of 20mm ammunition and a 300 gallon external centerline fuel tank. In this configuration, the F-16 weighs 31,640 pounds. With 29,000 pounds of thrust, the F-16 has a takeoff thrust-to-weight ratio of 0.92:1. The reader should be cautioned that these thrust-to-weight ratios are based on uninstalled thrust. Once an engine is installed in the aircraft, it produces less thrust than it does on a test stand due to the air intake allowing in less air than the engine has available on the test stand.
The actual installed thrust-to-weight ratios vary based on the source. On average, they are in the 1:1 regime or better for both aircraft. The centerline fuel tanks can be jettisoned and probably would be if the situation dictated with an associated decrease in drag and weight and an increase in performance.

Speed

Both aircraft display good performance throughout their flight regimes in the comparison configuration. The MiG-29 enjoys a speed advantage at high altitude with a flight manual limit of Mach 2.3. The F-16’s high altitude limit is
Mach 2.05 but this is more of a limit of inlet design. The MiG-29 has variable geometry inlets to control the shock wave that forms in the inlet and prevent supersonic flow from reaching the engine. The F-16 employs a simple fixed-geometry inlet with a sharp upper lip that extends out beyond the lower portion of the inlet. A shock wave forms on this lip and prevents the flow in the intake from going supersonic. The objective is to keep the air going into the engine subsonic unlike a certain ‘subject matter expert’ on this website who thinks that the air should be accelerated to even higher speeds than the aircraft is traveling. Supersonic air in the compressor section? That’s bad.

Both aircraft have the same indicated airspeed limit at lower altitudes of
810 knots. This would require the centerline tanks to be jettisoned. The placard limits for the tanks are 600 knots or Mach 1.6 (Mach 1.5 for the MiG-29) whichever less is. It was the researcher’s experience that the MiG-29 would probably not reach this limit unless a dive was initiated. The F-16 Block 40 will easily reach 800 knots on the deck. In fact, power must be reduced to avoid exceeding placard limits. The limit is not thrust, as the F-16 has been test flown on the plus side of 900 knots. The limit for the F-16 is the canopy. Heating due to air friction at such speeds will cause the polycarbonate canopy to get soft and ultimately fail.

Turning Capability

The MiG-29 and F-16 are both considered 9 G aircraft. Until the centerline tank is empty, the Fulcrum is limited to four Gs and the Viper to seven Gs. The
MiG-29 is also limited to seven Gs above Mach 0.85 while the F-16, once the centerline tank is empty (or jettisoned) can go to nine Gs regardless of airspeed or Mach number. The MiG-29’s seven G limit is due to loads on the vertical stabilizers. MAPO has advertised that the Fulcrum could be stressed to 12 Gs and still not hurt the airframe. This statement is probably wishful and boastful. The German Luftwaffe, which flew its MiG-29s probably more aggressively than any other operator, experienced cracks in the structure at the base of the vertical tails. The F-16 can actually exceed nine Gs without overstressing the airframe. Depending on configuration, momentary overshoots to as much as 10.3 Gs will not cause any concern with aircraft maintainers.

Handling

Of the four fighters I have flown, the MiG-29 has by far the worst handling qualities. The hydro-mechanical flight control system uses an artificial feel system of springs and pulleys to simulate control force changes with varying airspeeds and altitudes. There is a stability augmentation system that makes the aircraft easier to fly but also makes the aircraft more sluggish to flight control inputs. It is my opinion that the jet is more responsive with the augmentation system disengaged. Unfortunately, this was allowed for demonstration purposes only as this also disengages the angle-of-attack (AoA) limiter. Stick forces are relatively light but the stick requires a lot of movement to get the desired response. This only adds to sluggish feeling of the aircraft. The entire time you are flying, the stick will move randomly about one-half inch on its own with a corresponding movement of the flight control surface. Flying the Fulcrum requires constant attention. If the pilot takes his hand off the throttles, the throttles probably won't stay in the position in which they were left. They'll probably slide back into the 'idle' position.

The Fulcrum is relatively easy to fly during most phases of flight such as takeoff, climb, cruise and landing. However, due to flight control limitations, the pilot must work hard to get the jet to respond the way he wants. This is especially evident in aggressive maneuvering, flying formation or during attempts to employ the gun. Aerial gunnery requires very precise handling in order to be successful. The MiG-29’s handling qualities in no way limit the ability of the pilot to perform his mission, but they do dramatically increase his workload. The F-16’s quadruple-redundant digital flight control system, on the other hand, is extremely responsive, precise and smooth throughout the flight regime.

There is no auto-trim system in the MiG-29 as in the F-16. Trimming the aircraft is practically an unattainable state of grace in the Fulcrum. The trim of the aircraft is very sensitive to changes in airspeed and power and requires constant attention. Changes to aircraft configuration such as raising and lowering the landing gear and flaps cause significant changes in pitch trim that the pilot must be prepared for. As a result, the MiG-29 requires constant attention to fly. The F-16 auto-trims to one G or for whatever G the pilot has manually trimmed the aircraft for.

The MiG-29 flight control system also has an AoA limiter that limits the allowable AoA to 26°. As the aircraft reaches the limit, pistons at the base of the stick push the stick forward and reduce the AoA about 5°. The pilot has to fight the flight controls to hold the jet at 26°. The limiter can be overridden, however, with about 17 kg more back pressure on the stick. While not entirely unsafe and at times tactically useful, care must be taken not to attempt to roll the aircraft with ailerons when above 26° AoA. In this case it is best to control roll with the rudders due to adverse yaw caused by the ailerons at high AoA. The F-16 is electronically limited to 26° AoA. While the pilot cannot manually override this limit it is possible to overshoot under certain conditions and risk departure from controlled flight. This is a disadvantage to the F-16 but is a safety margin due its lack of longitudinal stability. Both aircraft have a lift limit of approximately
35° AoA.

Combat Scenario

The ultimate comparison of two fighter aircraft comes down to a combat duel between them. After the Berlin Wall came down the reunified Germany inherited 24 MiG-29s from the Nationale Volksarmee of East Germany. The lessons of capitalism were not lost on MAPO-MiG (the Fulcrum’s manufacturer) who saw this as an opportunity to compare the Fulcrum directly with western types during NATO training exercises. MAPO was quick to boast how the MiG-29 had bested F-15s and F-16s in mock aerial combat. They claimed a combination of the MiG’s superior sensors, weapons and low radar cross section allowed the Fulcrum to beat western aircraft. However, much of the early exploitation was done more to ascertain the MiG-29’s capabilities versus attempting to determine what the outcome of actual combat would be. The western press was also quick to pick up on the theme. In 1991, Benjamin Lambeth cited an article in Jane’s Defence Weekly which stated that the German MiG-29s had beaten F-16s with simulated BVR range shots of more than 60 km. How was this possible when the MiG-29 cannot launch an AA-10A Alamo from outside about 25 km? Was this a case of the fish getting bigger with every telling of the story? The actual BVR capability of the MiG-29 was my biggest disappointment. Was it further exposure to the German Fulcrums in realistic training that showed the jet for what it truly is? It seems that MAPO’s free advertising backfired in the end as further orders were limited to the 18 airplanes sold to Malaysia.

If F-16Cs and MiG-29s face off in aerial combat, both would detect each other on the radar at comparable range. Armed with the AIM-120 AMRAAM, the F-16s would have the first shot opportunity at more than twice the range as the Fulcrums. A single F-16 would be able to discriminately target individual and multiple Fulcrums. The MiG-29’s radar will not allow this. If there is more than one F-16 in a formation, a Fulcrum pilot would not know exactly which F-16 the radar had locked and he can engage only one F-16 at a time. A Viper pilot can launch AMRAAMS against multiple MiG-29s on the first pass and support his missiles via data link until the missiles go active. He can break the radar lock and leave or continue to the visual arena and employ short range infrared guided missiles or the gun. The Fulcrum pilot must wait until about 13 nautical miles (24 kilometers) before he can shoot his BVR missile. The Alamo is a semi-active missile that must be supported by the launching aircraft until impact. This brings the Fulcrum pilot closer to the AMRAAM. In fact, just as the the Fulcrum pilot gets in range to fire an Alamo, the AMRAAM is seconds away from impacting his aircraft. The advantage goes to the F-16.

What if both pilots are committed to engage visually? The F-16 should have the initial advantage as he knows the Fulcrum’s exact altitude and has the target designator box in the head-up display (HUD) to aid in visual acquisition. The Fulcrum’s engines smoke heavily and are a good aid to gaining sight of the adversary. Another advantage is the F-16’s large bubble canopy with 360° field-of-view. The Fulcrum pilot’s HUD doesn’t help much in gaining sight of the F-16. The F-16 is small and has a smokeless engine. The MiG-29 pilot sets low in his cockpit and visibility between the 4 o’clock and 7 o’clock positions is virtually nonexistent.

Charts that compare actual maneuvering performance of the two aircraft are classified. It was the researcher’s experience that the aircraft have comparable initial turning performance. However, the MiG-29 suffers from a higher energy bleed rate than the F-16. This is due to high induced drag on the airframe during high-G maneuvering. F-16 pilots that have flown against the Fulcrum have made similar observations that the F-16 can sustain a high-G turn longer. This results in a turn rate advantage that translates into a positional advantage for the F-16.

The F-16 is also much easier to fly and is more responsive at slow speed.
The Fulcrum’s maximum roll rate is 160° per second. At slow speed this decreases to around 20° per second. Coupled with the large amount of stick movement required, the Fulcrum is extremely sluggish at slow speed. Maneuvering to defeat a close-range gun shot is extremely difficult if the airplane won’t move. For comparison, the F-16’s slow speed roll rate is a little more than 80° per second.

A lot has been written and theorized about the so-called “Cobra Maneuver” that impresses people at airshows. MAPO claimed that no western fighter dare do this same maneuver in public. They also claimed that the Cobra could be used to break the radar lock of an enemy fighter (due to the slow airspeed, there is no Doppler signal for the radar to track) or point the nose of the aircraft to employ weapons. Western fighter pilots were content to let the Russians brag and hope for the opportunity to see a MiG-29 give up all its airspeed. The fact that this maneuver is prohibited in the flight manual only validates the fact that this maneuver was a stunt. Lambeth was the first American to get a flight in the Fulcrum. Even his pilot conceded that the Cobra required a specially prepared aircraft and was prohibited in operational MiG-29 units

Another maneuver performed by the Fulcrum during its introduction to the West is the so-called “Tail Slide”. The nose of the jet is brought to 90° pitch and the airspeed is allowed to decay. Eventually, the Fulcrum begins to “slide” back, tail-first, until the nose drops and the jet begins to fly normally again. The Soviets boasted this maneuver demonstrated how robust the engines were as this would cause western engines to flameout. The first maneuver demonstrated to me during my F-15 training was the Tail Slide. The engines did not flameout.

The MiG-29 is not without strong points. The pilot can override the angle of attack limiter. This is especially useful in vertical maneuvering or in last ditch attempts to bring weapons to bear or defeat enemy shots. The HMS and AA-11 Archer make the Fulcrum a deadly foe in the visual arena. The AA-11 is far superior to the American AIM-9M. By merely turning his head, the MiG pilot can bring an Archer to bear. The one limitation, however, is that the Fulcrum pilot has no cue as to where the Archer seeker head is actually looking. This makes it impossible to determine if the missile is tracking the target, a flare, or some other hot spot in the background. (Note: the AIM-9X which is already fielded on the F-15C, and to be fielded on the F-16 in 2007, is far superior to the AA-11)

Fulcrum pilots have enjoyed their most success with the HMS/Archer combination in one versus one training missions. In this sterile environment, where both aircraft start within visual range of each other, the MiG-29 has a great advantage. Not because it is more maneuverable than the F-16. That is most certainly not the case regardless of the claims of the Fulcrum’s manufacturer and numerous other misinformed propaganda sources. The weapon/sensor integration with the HMS and Archer makes close-in missile employment extremely easy for the Fulcrum’s pilot. My only one versus one fight against a MiG-29 (in something other than another MiG-29) was flown in an F-16 Block 52. This was done against a German MiG-29 at Nellis AFB, Nevada. The F-16 outturned and out-powered the Fulcrum in every situation.

The Fulcrum’s gun system is fairly accurate as long as the target does not attempt to defeat the shot. If the target maneuvers, the gunsight requires large corrections to get back to solution. Coupled with the jet’s imprecise handling, this makes close-in maneuvering difficult. This is very important when using the gun. Although the Fulcrum has a 30 mm cannon, the muzzle velocity is no more than the 20 mm rounds coming out of the F-16’s gun. The MiG’s effective gun range is actually less than that of the F-16 as the 20 mm rounds are more aerodynamic and maintain their velocity longer.

If the fight lasts very long, the MiG pilot is at a decided disadvantage and must either kill his foe or find a timely opportunity to leave the fight without placing himself on the defensive. The Fulcrum A holds only 300 pounds more internal fuel than the F-16 and its two engines go through it quickly. There are no fuel flow gauges in the cockpit. Using the clock and the fuel gauge, in full afterburner the MiG-29 uses fuel 3.5 to 4 times faster than the Viper. My shortest MiG-29 sortie was 16 minutes from brake release to touchdown.

It should not be forgotten that fights between fighters do not occur in a vacuum. One-versus-one comparisons are one thing, but start to include other fighters into the fray and situational awareness (SA) plays an even bigger role. The lack of SA-building tools for MiG-29 pilots will become an even bigger factor if they have more aircraft to keep track of. Poor radar and HUD displays, poor cockpit ergonomics and poor handling qualities added to the Fulcrum pilot’s workload and degraded his overall SA. It was my experience during one-versus-one scenarios emphasizing dogfighting skills, the results came down to pilot skill.

In multi-ship scenarios, such as a typical four versus four training mission, the advantage clearly went to the side with the highest SA. Against F-15s and F-16s in multi-ship fights, the MiG-29s were always outclassed. It was nearly impossible to use the great potential of the HMS/Archer combination when all the Eagles and Vipers couldn’t be accounted for and the Fulcrums were on the defensive. The MiG-29’s design was a result of the Soviet view on tactical aviation and the level of technology available to their aircraft industry. The pilot was not meant to have a lot of SA. The center of fighter execution was the ground controller. The pilot’s job was to do as instructed and not to make independent decisions. Even the data link system in the MiG-29 was not meant to enhance the pilot’s SA. He was merely linked steering, altitude and heading cues to follow from the controller. If the MiG-29 pilot is cut off from his controller, his autonomous capabilities are extremely limited. Western fighter pilots are given the tools they need to make independent tactical decisions. The mission commander is a pilot on the scene. All other assets are there to assist and not to direct. If the F-16 pilot loses contact with support assets such as the E-3 Airborne Warning and Control System (AWACS) aircraft, he has all the tools to complete the mission autonomously.

The combat record of the MiG-29 speaks for itself. American F-15s and F-
16s (a Dutch F-16 shot down a MiG-29 during Operation Allied Force) have downed MiG-29s every time there has been encounters between the types. The only known MiG-29 “victories” occurred during Operation Desert Storm when an Iraqi MiG-29 shot down his own wingman on the first night of the war and a Cuban MiG-29 brought down 2 “mighty” Cessnas. Are there more victories for the Fulcrum? Not against F-15s or F-16s.

Designed and built to counter the fourth generation American fighters, The MiG-29 Fulcrum was a concept that was technologically and doctrinally hindered from the beginning. Feared in the west prior to the demise of the Soviet Union, it was merely an incremental improvement to the earlier Soviet fighters it replaced. Its lack of a market when put in direct competition to western designs should attest to its shortcomings. The German pilots who flew the aircraft said that the MiG-29 looked good at an airshow but they wouldn’t have wanted to take one to combat. Advanced versions such as the SMT and MiG-33? Certainly better but has anyone bought one?

Lt. Col. Johann Köck, commander of the German MiG-29 squadron from
September 1995 to September 1997, was outspoken in his evaluation of the Fulcrum. “It has no range, its navigation system is unreliable and the radar breaks often and does not lend it self to autonomous operations”, he said. He added that the best mission for NATO MiG-29s would be as a dedicated adversary aircraft for other NATO fighters and not as part of NATO’s frontline fighter force.
 
.
MiG-29 Fulcrum Versus F-16 Viper

The baseline MiG-29 for this comparison will be the MiG-29A (except for 200 kg more fuel and an internal jammer, the MiG-29C was not an improvement over the MiG-29A), as this was the most widely deployed version of the aircraft. The baseline F-16 will be the F-16C Block 40. Although there is a more advanced and powerful version of the F-16C, the Block 40 was produced and fielded during the height of Fulcrum production.

A combat loaded MiG-29A tips the scales at approximately 38, 500 pounds. This figure includes a full load of internal fuel, two AA-10A Alamo missiles, four AA-11 Archer missiles, 150 rounds of 30mm ammunition and a full centerline 1,500 liter external fuel tank. With 18,600 pounds of thrust per engine, this gives the Fulcrum a takeoff thrust-to-weight ratio of 0.97:1. A similarly loaded air-to-air configured F-16 Block 40 would carry four AIM-120 AMRAAM active radar-guided missiles, two AIM-9M IR-guided missiles, 510 rounds of 20mm ammunition and a 300 gallon external centerline fuel tank. In this configuration, the F-16 weighs 31,640 pounds. With 29,000 pounds of thrust, the F-16 has a takeoff thrust-to-weight ratio of 0.92:1. The reader should be cautioned that these thrust-to-weight ratios are based on uninstalled thrust. Once an engine is installed in the aircraft, it produces less thrust than it does on a test stand due to the air intake allowing in less air than the engine has available on the test stand.
The actual installed thrust-to-weight ratios vary based on the source. On average, they are in the 1:1 regime or better for both aircraft. The centerline fuel tanks can be jettisoned and probably would be if the situation dictated with an associated decrease in drag and weight and an increase in performance.

Speed

Both aircraft display good performance throughout their flight regimes in the comparison configuration. The MiG-29 enjoys a speed advantage at high altitude with a flight manual limit of Mach 2.3. The F-16’s high altitude limit is
Mach 2.05 but this is more of a limit of inlet design. The MiG-29 has variable geometry inlets to control the shock wave that forms in the inlet and prevent supersonic flow from reaching the engine. The F-16 employs a simple fixed-geometry inlet with a sharp upper lip that extends out beyond the lower portion of the inlet. A shock wave forms on this lip and prevents the flow in the intake from going supersonic. The objective is to keep the air going into the engine subsonic unlike a certain ‘subject matter expert’ on this website who thinks that the air should be accelerated to even higher speeds than the aircraft is traveling. Supersonic air in the compressor section? That’s bad.

Both aircraft have the same indicated airspeed limit at lower altitudes of
810 knots. This would require the centerline tanks to be jettisoned. The placard limits for the tanks are 600 knots or Mach 1.6 (Mach 1.5 for the MiG-29) whichever less is. It was the researcher’s experience that the MiG-29 would probably not reach this limit unless a dive was initiated. The F-16 Block 40 will easily reach 800 knots on the deck. In fact, power must be reduced to avoid exceeding placard limits. The limit is not thrust, as the F-16 has been test flown on the plus side of 900 knots. The limit for the F-16 is the canopy. Heating due to air friction at such speeds will cause the polycarbonate canopy to get soft and ultimately fail.

Turning Capability

The MiG-29 and F-16 are both considered 9 G aircraft. Until the centerline tank is empty, the Fulcrum is limited to four Gs and the Viper to seven Gs. The
MiG-29 is also limited to seven Gs above Mach 0.85 while the F-16, once the centerline tank is empty (or jettisoned) can go to nine Gs regardless of airspeed or Mach number. The MiG-29’s seven G limit is due to loads on the vertical stabilizers. MAPO has advertised that the Fulcrum could be stressed to 12 Gs and still not hurt the airframe. This statement is probably wishful and boastful. The German Luftwaffe, which flew its MiG-29s probably more aggressively than any other operator, experienced cracks in the structure at the base of the vertical tails. The F-16 can actually exceed nine Gs without overstressing the airframe. Depending on configuration, momentary overshoots to as much as 10.3 Gs will not cause any concern with aircraft maintainers.

Handling

Of the four fighters I have flown, the MiG-29 has by far the worst handling qualities. The hydro-mechanical flight control system uses an artificial feel system of springs and pulleys to simulate control force changes with varying airspeeds and altitudes. There is a stability augmentation system that makes the aircraft easier to fly but also makes the aircraft more sluggish to flight control inputs. It is my opinion that the jet is more responsive with the augmentation system disengaged. Unfortunately, this was allowed for demonstration purposes only as this also disengages the angle-of-attack (AoA) limiter. Stick forces are relatively light but the stick requires a lot of movement to get the desired response. This only adds to sluggish feeling of the aircraft. The entire time you are flying, the stick will move randomly about one-half inch on its own with a corresponding movement of the flight control surface. Flying the Fulcrum requires constant attention. If the pilot takes his hand off the throttles, the throttles probably won't stay in the position in which they were left. They'll probably slide back into the 'idle' position.

The Fulcrum is relatively easy to fly during most phases of flight such as takeoff, climb, cruise and landing. However, due to flight control limitations, the pilot must work hard to get the jet to respond the way he wants. This is especially evident in aggressive maneuvering, flying formation or during attempts to employ the gun. Aerial gunnery requires very precise handling in order to be successful. The MiG-29’s handling qualities in no way limit the ability of the pilot to perform his mission, but they do dramatically increase his workload. The F-16’s quadruple-redundant digital flight control system, on the other hand, is extremely responsive, precise and smooth throughout the flight regime.

There is no auto-trim system in the MiG-29 as in the F-16. Trimming the aircraft is practically an unattainable state of grace in the Fulcrum. The trim of the aircraft is very sensitive to changes in airspeed and power and requires constant attention. Changes to aircraft configuration such as raising and lowering the landing gear and flaps cause significant changes in pitch trim that the pilot must be prepared for. As a result, the MiG-29 requires constant attention to fly. The F-16 auto-trims to one G or for whatever G the pilot has manually trimmed the aircraft for.

The MiG-29 flight control system also has an AoA limiter that limits the allowable AoA to 26°. As the aircraft reaches the limit, pistons at the base of the stick push the stick forward and reduce the AoA about 5°. The pilot has to fight the flight controls to hold the jet at 26°. The limiter can be overridden, however, with about 17 kg more back pressure on the stick. While not entirely unsafe and at times tactically useful, care must be taken not to attempt to roll the aircraft with ailerons when above 26° AoA. In this case it is best to control roll with the rudders due to adverse yaw caused by the ailerons at high AoA. The F-16 is electronically limited to 26° AoA. While the pilot cannot manually override this limit it is possible to overshoot under certain conditions and risk departure from controlled flight. This is a disadvantage to the F-16 but is a safety margin due its lack of longitudinal stability. Both aircraft have a lift limit of approximately
35° AoA.

Combat Scenario

The ultimate comparison of two fighter aircraft comes down to a combat duel between them. After the Berlin Wall came down the reunified Germany inherited 24 MiG-29s from the Nationale Volksarmee of East Germany. The lessons of capitalism were not lost on MAPO-MiG (the Fulcrum’s manufacturer) who saw this as an opportunity to compare the Fulcrum directly with western types during NATO training exercises. MAPO was quick to boast how the MiG-29 had bested F-15s and F-16s in mock aerial combat. They claimed a combination of the MiG’s superior sensors, weapons and low radar cross section allowed the Fulcrum to beat western aircraft. However, much of the early exploitation was done more to ascertain the MiG-29’s capabilities versus attempting to determine what the outcome of actual combat would be. The western press was also quick to pick up on the theme. In 1991, Benjamin Lambeth cited an article in Jane’s Defence Weekly which stated that the German MiG-29s had beaten F-16s with simulated BVR range shots of more than 60 km. How was this possible when the MiG-29 cannot launch an AA-10A Alamo from outside about 25 km? Was this a case of the fish getting bigger with every telling of the story? The actual BVR capability of the MiG-29 was my biggest disappointment. Was it further exposure to the German Fulcrums in realistic training that showed the jet for what it truly is? It seems that MAPO’s free advertising backfired in the end as further orders were limited to the 18 airplanes sold to Malaysia.

If F-16Cs and MiG-29s face off in aerial combat, both would detect each other on the radar at comparable range. Armed with the AIM-120 AMRAAM, the F-16s would have the first shot opportunity at more than twice the range as the Fulcrums. A single F-16 would be able to discriminately target individual and multiple Fulcrums. The MiG-29’s radar will not allow this. If there is more than one F-16 in a formation, a Fulcrum pilot would not know exactly which F-16 the radar had locked and he can engage only one F-16 at a time. A Viper pilot can launch AMRAAMS against multiple MiG-29s on the first pass and support his missiles via data link until the missiles go active. He can break the radar lock and leave or continue to the visual arena and employ short range infrared guided missiles or the gun. The Fulcrum pilot must wait until about 13 nautical miles (24 kilometers) before he can shoot his BVR missile. The Alamo is a semi-active missile that must be supported by the launching aircraft until impact. This brings the Fulcrum pilot closer to the AMRAAM. In fact, just as the the Fulcrum pilot gets in range to fire an Alamo, the AMRAAM is seconds away from impacting his aircraft. The advantage goes to the F-16.

What if both pilots are committed to engage visually? The F-16 should have the initial advantage as he knows the Fulcrum’s exact altitude and has the target designator box in the head-up display (HUD) to aid in visual acquisition. The Fulcrum’s engines smoke heavily and are a good aid to gaining sight of the adversary. Another advantage is the F-16’s large bubble canopy with 360° field-of-view. The Fulcrum pilot’s HUD doesn’t help much in gaining sight of the F-16. The F-16 is small and has a smokeless engine. The MiG-29 pilot sets low in his cockpit and visibility between the 4 o’clock and 7 o’clock positions is virtually nonexistent.

Charts that compare actual maneuvering performance of the two aircraft are classified. It was the researcher’s experience that the aircraft have comparable initial turning performance. However, the MiG-29 suffers from a higher energy bleed rate than the F-16. This is due to high induced drag on the airframe during high-G maneuvering. F-16 pilots that have flown against the Fulcrum have made similar observations that the F-16 can sustain a high-G turn longer. This results in a turn rate advantage that translates into a positional advantage for the F-16.

The F-16 is also much easier to fly and is more responsive at slow speed.
The Fulcrum’s maximum roll rate is 160° per second. At slow speed this decreases to around 20° per second. Coupled with the large amount of stick movement required, the Fulcrum is extremely sluggish at slow speed. Maneuvering to defeat a close-range gun shot is extremely difficult if the airplane won’t move. For comparison, the F-16’s slow speed roll rate is a little more than 80° per second.

A lot has been written and theorized about the so-called “Cobra Maneuver” that impresses people at airshows. MAPO claimed that no western fighter dare do this same maneuver in public. They also claimed that the Cobra could be used to break the radar lock of an enemy fighter (due to the slow airspeed, there is no Doppler signal for the radar to track) or point the nose of the aircraft to employ weapons. Western fighter pilots were content to let the Russians brag and hope for the opportunity to see a MiG-29 give up all its airspeed. The fact that this maneuver is prohibited in the flight manual only validates the fact that this maneuver was a stunt. Lambeth was the first American to get a flight in the Fulcrum. Even his pilot conceded that the Cobra required a specially prepared aircraft and was prohibited in operational MiG-29 units

Another maneuver performed by the Fulcrum during its introduction to the West is the so-called “Tail Slide”. The nose of the jet is brought to 90° pitch and the airspeed is allowed to decay. Eventually, the Fulcrum begins to “slide” back, tail-first, until the nose drops and the jet begins to fly normally again. The Soviets boasted this maneuver demonstrated how robust the engines were as this would cause western engines to flameout. The first maneuver demonstrated to me during my F-15 training was the Tail Slide. The engines did not flameout.

The MiG-29 is not without strong points. The pilot can override the angle of attack limiter. This is especially useful in vertical maneuvering or in last ditch attempts to bring weapons to bear or defeat enemy shots. The HMS and AA-11 Archer make the Fulcrum a deadly foe in the visual arena. The AA-11 is far superior to the American AIM-9M. By merely turning his head, the MiG pilot can bring an Archer to bear. The one limitation, however, is that the Fulcrum pilot has no cue as to where the Archer seeker head is actually looking. This makes it impossible to determine if the missile is tracking the target, a flare, or some other hot spot in the background. (Note: the AIM-9X which is already fielded on the F-15C, and to be fielded on the F-16 in 2007, is far superior to the AA-11)

Fulcrum pilots have enjoyed their most success with the HMS/Archer combination in one versus one training missions. In this sterile environment, where both aircraft start within visual range of each other, the MiG-29 has a great advantage. Not because it is more maneuverable than the F-16. That is most certainly not the case regardless of the claims of the Fulcrum’s manufacturer and numerous other misinformed propaganda sources. The weapon/sensor integration with the HMS and Archer makes close-in missile employment extremely easy for the Fulcrum’s pilot. My only one versus one fight against a MiG-29 (in something other than another MiG-29) was flown in an F-16 Block 52. This was done against a German MiG-29 at Nellis AFB, Nevada. The F-16 outturned and out-powered the Fulcrum in every situation.

The Fulcrum’s gun system is fairly accurate as long as the target does not attempt to defeat the shot. If the target maneuvers, the gunsight requires large corrections to get back to solution. Coupled with the jet’s imprecise handling, this makes close-in maneuvering difficult. This is very important when using the gun. Although the Fulcrum has a 30 mm cannon, the muzzle velocity is no more than the 20 mm rounds coming out of the F-16’s gun. The MiG’s effective gun range is actually less than that of the F-16 as the 20 mm rounds are more aerodynamic and maintain their velocity longer.

If the fight lasts very long, the MiG pilot is at a decided disadvantage and must either kill his foe or find a timely opportunity to leave the fight without placing himself on the defensive. The Fulcrum A holds only 300 pounds more internal fuel than the F-16 and its two engines go through it quickly. There are no fuel flow gauges in the cockpit. Using the clock and the fuel gauge, in full afterburner the MiG-29 uses fuel 3.5 to 4 times faster than the Viper. My shortest MiG-29 sortie was 16 minutes from brake release to touchdown.

It should not be forgotten that fights between fighters do not occur in a vacuum. One-versus-one comparisons are one thing, but start to include other fighters into the fray and situational awareness (SA) plays an even bigger role. The lack of SA-building tools for MiG-29 pilots will become an even bigger factor if they have more aircraft to keep track of. Poor radar and HUD displays, poor cockpit ergonomics and poor handling qualities added to the Fulcrum pilot’s workload and degraded his overall SA. It was my experience during one-versus-one scenarios emphasizing dogfighting skills, the results came down to pilot skill.

In multi-ship scenarios, such as a typical four versus four training mission, the advantage clearly went to the side with the highest SA. Against F-15s and F-16s in multi-ship fights, the MiG-29s were always outclassed. It was nearly impossible to use the great potential of the HMS/Archer combination when all the Eagles and Vipers couldn’t be accounted for and the Fulcrums were on the defensive. The MiG-29’s design was a result of the Soviet view on tactical aviation and the level of technology available to their aircraft industry. The pilot was not meant to have a lot of SA. The center of fighter execution was the ground controller. The pilot’s job was to do as instructed and not to make independent decisions. Even the data link system in the MiG-29 was not meant to enhance the pilot’s SA. He was merely linked steering, altitude and heading cues to follow from the controller. If the MiG-29 pilot is cut off from his controller, his autonomous capabilities are extremely limited. Western fighter pilots are given the tools they need to make independent tactical decisions. The mission commander is a pilot on the scene. All other assets are there to assist and not to direct. If the F-16 pilot loses contact with support assets such as the E-3 Airborne Warning and Control System (AWACS) aircraft, he has all the tools to complete the mission autonomously.

The combat record of the MiG-29 speaks for itself. American F-15s and F-
16s (a Dutch F-16 shot down a MiG-29 during Operation Allied Force) have downed MiG-29s every time there has been encounters between the types. The only known MiG-29 “victories” occurred during Operation Desert Storm when an Iraqi MiG-29 shot down his own wingman on the first night of the war and a Cuban MiG-29 brought down 2 “mighty” Cessnas. Are there more victories for the Fulcrum? Not against F-15s or F-16s.

Designed and built to counter the fourth generation American fighters, The MiG-29 Fulcrum was a concept that was technologically and doctrinally hindered from the beginning. Feared in the west prior to the demise of the Soviet Union, it was merely an incremental improvement to the earlier Soviet fighters it replaced. Its lack of a market when put in direct competition to western designs should attest to its shortcomings. The German pilots who flew the aircraft said that the MiG-29 looked good at an airshow but they wouldn’t have wanted to take one to combat. Advanced versions such as the SMT and MiG-33? Certainly better but has anyone bought one?

Lt. Col. Johann Köck, commander of the German MiG-29 squadron from
September 1995 to September 1997, was outspoken in his evaluation of the Fulcrum. “It has no range, its navigation system is unreliable and the radar breaks often and does not lend it self to autonomous operations”, he said. He added that the best mission for NATO MiG-29s would be as a dedicated adversary aircraft for other NATO fighters and not as part of NATO’s frontline fighter force.

Is there still any doubt in the minds of people who have repeatedly stated that PAF should have gone for MIG 29's instead of waiting for more F-16's Blk 52's?
 
.
Is there still any doubt in the minds of people who have repeatedly stated that PAF should have gone for MIG 29's instead of waiting for more F-16's Blk 52's?
you will always find such people over here....But I would give the credit to Indian posters for this rather than impressed Pakistani ones cuz they really do describe their ACs as formidable. I can remember a wave against FC-20 in the same forum then a similar one against JF-17 and now as you mentioned against F-16. We also have many posters with active posts on Twin engines rather than single engine. Even though I appreciate their feelings....but they must remember that just having a twin engines will not make a fighter an excellent one....the aim of an air craft should be to beat the hell out of the opponents what we call maneuverability. As long is my AC is more maneuverable and has a good ammo, even the legendary swat cat tri-engine turbocat stand little chance against me. :coffee:
 
.
Is there still any doubt in the minds of people who have repeatedly stated that PAF should have gone for MIG 29's instead of waiting for more F-16's Blk 52's?

Hi,

Isn't that a dillema of the worst kind---a pregnant daughter walks into his rich dad's office accompanied by the cad she wants to marry---so what should the dad do---damned if he does and damned if he don't.

We know the superiority of the aircraft the blk 52---that is why we want it bad---but then the fear of sanctions keeps us nervous as well---.

Now we have to guarantee the americans about our equipment as for its usage. We are getting close to more troubling times again.
 
.
Hi,

Isn't that a dillema of the worst kind---a pregnant daughter walks into his rich dad's office accompanied by the cad she wants to marry---so what should the dad do---damned if he does and damned if he don't.

We know the superiority of the aircraft the blk 52---that is why we want it bad---but then the fear of sanctions keeps us nervous as well---.

Now we have to guarantee the americans about our equipment as for its usage. We are getting close to more troubling times again.

I agree.....strings are the only bad thing in deal...well tell you what ....we have paid for these machines.....we own them...and we will use them as per our will......
 
.
MiG-29 Fulcrum Versus F-16 Viper

The baseline MiG-29 for this comparison will be the MiG-29A (except for 200 kg more fuel and an internal jammer, the MiG-29C was not an improvement over the MiG-29A), as this was the most widely deployed version of the aircraft. The baseline F-16 will be the F-16C Block 40. Although there is a more advanced and powerful version of the F-16C, the Block 40 was produced and fielded during the height of Fulcrum production.

A combat loaded MiG-29A tips the scales at approximately 38, 500 pounds. This figure includes a full load of internal fuel, two AA-10A Alamo missiles, four AA-11 Archer missiles, 150 rounds of 30mm ammunition and a full centerline 1,500 liter external fuel tank. With 18,600 pounds of thrust per engine, this gives the Fulcrum a takeoff thrust-to-weight ratio of 0.97:1. A similarly loaded air-to-air configured F-16 Block 40 would carry four AIM-120 AMRAAM active radar-guided missiles, two AIM-9M IR-guided missiles, 510 rounds of 20mm ammunition and a 300 gallon external centerline fuel tank. In this configuration, the F-16 weighs 31,640 pounds. With 29,000 pounds of thrust, the F-16 has a takeoff thrust-to-weight ratio of 0.92:1. The reader should be cautioned that these thrust-to-weight ratios are based on uninstalled thrust. Once an engine is installed in the aircraft, it produces less thrust than it does on a test stand due to the air intake allowing in less air than the engine has available on the test stand.
The actual installed thrust-to-weight ratios vary based on the source. On average, they are in the 1:1 regime or better for both aircraft. The centerline fuel tanks can be jettisoned and probably would be if the situation dictated with an associated decrease in drag and weight and an increase in performance.

Speed

Both aircraft display good performance throughout their flight regimes in the comparison configuration. The MiG-29 enjoys a speed advantage at high altitude with a flight manual limit of Mach 2.3. The F-16’s high altitude limit is
Mach 2.05 but this is more of a limit of inlet design. The MiG-29 has variable geometry inlets to control the shock wave that forms in the inlet and prevent supersonic flow from reaching the engine. The F-16 employs a simple fixed-geometry inlet with a sharp upper lip that extends out beyond the lower portion of the inlet. A shock wave forms on this lip and prevents the flow in the intake from going supersonic. The objective is to keep the air going into the engine subsonic unlike a certain ‘subject matter expert’ on this website who thinks that the air should be accelerated to even higher speeds than the aircraft is traveling. Supersonic air in the compressor section? That’s bad.

Both aircraft have the same indicated airspeed limit at lower altitudes of
810 knots. This would require the centerline tanks to be jettisoned. The placard limits for the tanks are 600 knots or Mach 1.6 (Mach 1.5 for the MiG-29) whichever less is. It was the researcher’s experience that the MiG-29 would probably not reach this limit unless a dive was initiated. The F-16 Block 40 will easily reach 800 knots on the deck. In fact, power must be reduced to avoid exceeding placard limits. The limit is not thrust, as the F-16 has been test flown on the plus side of 900 knots. The limit for the F-16 is the canopy. Heating due to air friction at such speeds will cause the polycarbonate canopy to get soft and ultimately fail.

Turning Capability

The MiG-29 and F-16 are both considered 9 G aircraft. Until the centerline tank is empty, the Fulcrum is limited to four Gs and the Viper to seven Gs. The
MiG-29 is also limited to seven Gs above Mach 0.85 while the F-16, once the centerline tank is empty (or jettisoned) can go to nine Gs regardless of airspeed or Mach number. The MiG-29’s seven G limit is due to loads on the vertical stabilizers. MAPO has advertised that the Fulcrum could be stressed to 12 Gs and still not hurt the airframe. This statement is probably wishful and boastful. The German Luftwaffe, which flew its MiG-29s probably more aggressively than any other operator, experienced cracks in the structure at the base of the vertical tails. The F-16 can actually exceed nine Gs without overstressing the airframe. Depending on configuration, momentary overshoots to as much as 10.3 Gs will not cause any concern with aircraft maintainers.

Handling

Of the four fighters I have flown, the MiG-29 has by far the worst handling qualities. The hydro-mechanical flight control system uses an artificial feel system of springs and pulleys to simulate control force changes with varying airspeeds and altitudes. There is a stability augmentation system that makes the aircraft easier to fly but also makes the aircraft more sluggish to flight control inputs. It is my opinion that the jet is more responsive with the augmentation system disengaged. Unfortunately, this was allowed for demonstration purposes only as this also disengages the angle-of-attack (AoA) limiter. Stick forces are relatively light but the stick requires a lot of movement to get the desired response. This only adds to sluggish feeling of the aircraft. The entire time you are flying, the stick will move randomly about one-half inch on its own with a corresponding movement of the flight control surface. Flying the Fulcrum requires constant attention. If the pilot takes his hand off the throttles, the throttles probably won't stay in the position in which they were left. They'll probably slide back into the 'idle' position.

The Fulcrum is relatively easy to fly during most phases of flight such as takeoff, climb, cruise and landing. However, due to flight control limitations, the pilot must work hard to get the jet to respond the way he wants. This is especially evident in aggressive maneuvering, flying formation or during attempts to employ the gun. Aerial gunnery requires very precise handling in order to be successful. The MiG-29’s handling qualities in no way limit the ability of the pilot to perform his mission, but they do dramatically increase his workload. The F-16’s quadruple-redundant digital flight control system, on the other hand, is extremely responsive, precise and smooth throughout the flight regime.

There is no auto-trim system in the MiG-29 as in the F-16. Trimming the aircraft is practically an unattainable state of grace in the Fulcrum. The trim of the aircraft is very sensitive to changes in airspeed and power and requires constant attention. Changes to aircraft configuration such as raising and lowering the landing gear and flaps cause significant changes in pitch trim that the pilot must be prepared for. As a result, the MiG-29 requires constant attention to fly. The F-16 auto-trims to one G or for whatever G the pilot has manually trimmed the aircraft for.

The MiG-29 flight control system also has an AoA limiter that limits the allowable AoA to 26°. As the aircraft reaches the limit, pistons at the base of the stick push the stick forward and reduce the AoA about 5°. The pilot has to fight the flight controls to hold the jet at 26°. The limiter can be overridden, however, with about 17 kg more back pressure on the stick. While not entirely unsafe and at times tactically useful, care must be taken not to attempt to roll the aircraft with ailerons when above 26° AoA. In this case it is best to control roll with the rudders due to adverse yaw caused by the ailerons at high AoA. The F-16 is electronically limited to 26° AoA. While the pilot cannot manually override this limit it is possible to overshoot under certain conditions and risk departure from controlled flight. This is a disadvantage to the F-16 but is a safety margin due its lack of longitudinal stability. Both aircraft have a lift limit of approximately
35° AoA.

Combat Scenario

The ultimate comparison of two fighter aircraft comes down to a combat duel between them. After the Berlin Wall came down the reunified Germany inherited 24 MiG-29s from the Nationale Volksarmee of East Germany. The lessons of capitalism were not lost on MAPO-MiG (the Fulcrum’s manufacturer) who saw this as an opportunity to compare the Fulcrum directly with western types during NATO training exercises. MAPO was quick to boast how the MiG-29 had bested F-15s and F-16s in mock aerial combat. They claimed a combination of the MiG’s superior sensors, weapons and low radar cross section allowed the Fulcrum to beat western aircraft. However, much of the early exploitation was done more to ascertain the MiG-29’s capabilities versus attempting to determine what the outcome of actual combat would be. The western press was also quick to pick up on the theme. In 1991, Benjamin Lambeth cited an article in Jane’s Defence Weekly which stated that the German MiG-29s had beaten F-16s with simulated BVR range shots of more than 60 km. How was this possible when the MiG-29 cannot launch an AA-10A Alamo from outside about 25 km? Was this a case of the fish getting bigger with every telling of the story? The actual BVR capability of the MiG-29 was my biggest disappointment. Was it further exposure to the German Fulcrums in realistic training that showed the jet for what it truly is? It seems that MAPO’s free advertising backfired in the end as further orders were limited to the 18 airplanes sold to Malaysia.

If F-16Cs and MiG-29s face off in aerial combat, both would detect each other on the radar at comparable range. Armed with the AIM-120 AMRAAM, the F-16s would have the first shot opportunity at more than twice the range as the Fulcrums. A single F-16 would be able to discriminately target individual and multiple Fulcrums. The MiG-29’s radar will not allow this. If there is more than one F-16 in a formation, a Fulcrum pilot would not know exactly which F-16 the radar had locked and he can engage only one F-16 at a time. A Viper pilot can launch AMRAAMS against multiple MiG-29s on the first pass and support his missiles via data link until the missiles go active. He can break the radar lock and leave or continue to the visual arena and employ short range infrared guided missiles or the gun. The Fulcrum pilot must wait until about 13 nautical miles (24 kilometers) before he can shoot his BVR missile. The Alamo is a semi-active missile that must be supported by the launching aircraft until impact. This brings the Fulcrum pilot closer to the AMRAAM. In fact, just as the the Fulcrum pilot gets in range to fire an Alamo, the AMRAAM is seconds away from impacting his aircraft. The advantage goes to the F-16.

What if both pilots are committed to engage visually? The F-16 should have the initial advantage as he knows the Fulcrum’s exact altitude and has the target designator box in the head-up display (HUD) to aid in visual acquisition. The Fulcrum’s engines smoke heavily and are a good aid to gaining sight of the adversary. Another advantage is the F-16’s large bubble canopy with 360° field-of-view. The Fulcrum pilot’s HUD doesn’t help much in gaining sight of the F-16. The F-16 is small and has a smokeless engine. The MiG-29 pilot sets low in his cockpit and visibility between the 4 o’clock and 7 o’clock positions is virtually nonexistent.

Charts that compare actual maneuvering performance of the two aircraft are classified. It was the researcher’s experience that the aircraft have comparable initial turning performance. However, the MiG-29 suffers from a higher energy bleed rate than the F-16. This is due to high induced drag on the airframe during high-G maneuvering. F-16 pilots that have flown against the Fulcrum have made similar observations that the F-16 can sustain a high-G turn longer. This results in a turn rate advantage that translates into a positional advantage for the F-16.

The F-16 is also much easier to fly and is more responsive at slow speed.
The Fulcrum’s maximum roll rate is 160° per second. At slow speed this decreases to around 20° per second. Coupled with the large amount of stick movement required, the Fulcrum is extremely sluggish at slow speed. Maneuvering to defeat a close-range gun shot is extremely difficult if the airplane won’t move. For comparison, the F-16’s slow speed roll rate is a little more than 80° per second.

A lot has been written and theorized about the so-called “Cobra Maneuver” that impresses people at airshows. MAPO claimed that no western fighter dare do this same maneuver in public. They also claimed that the Cobra could be used to break the radar lock of an enemy fighter (due to the slow airspeed, there is no Doppler signal for the radar to track) or point the nose of the aircraft to employ weapons. Western fighter pilots were content to let the Russians brag and hope for the opportunity to see a MiG-29 give up all its airspeed. The fact that this maneuver is prohibited in the flight manual only validates the fact that this maneuver was a stunt. Lambeth was the first American to get a flight in the Fulcrum. Even his pilot conceded that the Cobra required a specially prepared aircraft and was prohibited in operational MiG-29 units

Another maneuver performed by the Fulcrum during its introduction to the West is the so-called “Tail Slide”. The nose of the jet is brought to 90° pitch and the airspeed is allowed to decay. Eventually, the Fulcrum begins to “slide” back, tail-first, until the nose drops and the jet begins to fly normally again. The Soviets boasted this maneuver demonstrated how robust the engines were as this would cause western engines to flameout. The first maneuver demonstrated to me during my F-15 training was the Tail Slide. The engines did not flameout.

The MiG-29 is not without strong points. The pilot can override the angle of attack limiter. This is especially useful in vertical maneuvering or in last ditch attempts to bring weapons to bear or defeat enemy shots. The HMS and AA-11 Archer make the Fulcrum a deadly foe in the visual arena. The AA-11 is far superior to the American AIM-9M. By merely turning his head, the MiG pilot can bring an Archer to bear. The one limitation, however, is that the Fulcrum pilot has no cue as to where the Archer seeker head is actually looking. This makes it impossible to determine if the missile is tracking the target, a flare, or some other hot spot in the background. (Note: the AIM-9X which is already fielded on the F-15C, and to be fielded on the F-16 in 2007, is far superior to the AA-11)

Fulcrum pilots have enjoyed their most success with the HMS/Archer combination in one versus one training missions. In this sterile environment, where both aircraft start within visual range of each other, the MiG-29 has a great advantage. Not because it is more maneuverable than the F-16. That is most certainly not the case regardless of the claims of the Fulcrum’s manufacturer and numerous other misinformed propaganda sources. The weapon/sensor integration with the HMS and Archer makes close-in missile employment extremely easy for the Fulcrum’s pilot. My only one versus one fight against a MiG-29 (in something other than another MiG-29) was flown in an F-16 Block 52. This was done against a German MiG-29 at Nellis AFB, Nevada. The F-16 outturned and out-powered the Fulcrum in every situation.

The Fulcrum’s gun system is fairly accurate as long as the target does not attempt to defeat the shot. If the target maneuvers, the gunsight requires large corrections to get back to solution. Coupled with the jet’s imprecise handling, this makes close-in maneuvering difficult. This is very important when using the gun. Although the Fulcrum has a 30 mm cannon, the muzzle velocity is no more than the 20 mm rounds coming out of the F-16’s gun. The MiG’s effective gun range is actually less than that of the F-16 as the 20 mm rounds are more aerodynamic and maintain their velocity longer.

If the fight lasts very long, the MiG pilot is at a decided disadvantage and must either kill his foe or find a timely opportunity to leave the fight without placing himself on the defensive. The Fulcrum A holds only 300 pounds more internal fuel than the F-16 and its two engines go through it quickly. There are no fuel flow gauges in the cockpit. Using the clock and the fuel gauge, in full afterburner the MiG-29 uses fuel 3.5 to 4 times faster than the Viper. My shortest MiG-29 sortie was 16 minutes from brake release to touchdown.

It should not be forgotten that fights between fighters do not occur in a vacuum. One-versus-one comparisons are one thing, but start to include other fighters into the fray and situational awareness (SA) plays an even bigger role. The lack of SA-building tools for MiG-29 pilots will become an even bigger factor if they have more aircraft to keep track of. Poor radar and HUD displays, poor cockpit ergonomics and poor handling qualities added to the Fulcrum pilot’s workload and degraded his overall SA. It was my experience during one-versus-one scenarios emphasizing dogfighting skills, the results came down to pilot skill.

In multi-ship scenarios, such as a typical four versus four training mission, the advantage clearly went to the side with the highest SA. Against F-15s and F-16s in multi-ship fights, the MiG-29s were always outclassed. It was nearly impossible to use the great potential of the HMS/Archer combination when all the Eagles and Vipers couldn’t be accounted for and the Fulcrums were on the defensive. The MiG-29’s design was a result of the Soviet view on tactical aviation and the level of technology available to their aircraft industry. The pilot was not meant to have a lot of SA. The center of fighter execution was the ground controller. The pilot’s job was to do as instructed and not to make independent decisions. Even the data link system in the MiG-29 was not meant to enhance the pilot’s SA. He was merely linked steering, altitude and heading cues to follow from the controller. If the MiG-29 pilot is cut off from his controller, his autonomous capabilities are extremely limited. Western fighter pilots are given the tools they need to make independent tactical decisions. The mission commander is a pilot on the scene. All other assets are there to assist and not to direct. If the F-16 pilot loses contact with support assets such as the E-3 Airborne Warning and Control System (AWACS) aircraft, he has all the tools to complete the mission autonomously.

The combat record of the MiG-29 speaks for itself. American F-15s and F-
16s (a Dutch F-16 shot down a MiG-29 during Operation Allied Force) have downed MiG-29s every time there has been encounters between the types. The only known MiG-29 “victories” occurred during Operation Desert Storm when an Iraqi MiG-29 shot down his own wingman on the first night of the war and a Cuban MiG-29 brought down 2 “mighty” Cessnas. Are there more victories for the Fulcrum? Not against F-15s or F-16s.

Designed and built to counter the fourth generation American fighters, The MiG-29 Fulcrum was a concept that was technologically and doctrinally hindered from the beginning. Feared in the west prior to the demise of the Soviet Union, it was merely an incremental improvement to the earlier Soviet fighters it replaced. Its lack of a market when put in direct competition to western designs should attest to its shortcomings. The German pilots who flew the aircraft said that the MiG-29 looked good at an airshow but they wouldn’t have wanted to take one to combat. Advanced versions such as the SMT and MiG-33? Certainly better but has anyone bought one?

Lt. Col. Johann Köck, commander of the German MiG-29 squadron from
September 1995 to September 1997, was outspoken in his evaluation of the Fulcrum. “It has no range, its navigation system is unreliable and the radar breaks often and does not lend it self to autonomous operations”, he said. He added that the best mission for NATO MiG-29s would be as a dedicated adversary aircraft for other NATO fighters and not as part of NATO’s frontline fighter force.

Interesting article. The turning performance of the F-16 series, the fuel flow, the basic handling characteristics, remain pretty much unchanged throughout the production. Most of the improvements come with the avionics, radar, pods and ground attack packages.

The great strength of Western fighters is in what we can call "the sort", and was what made other aircraft like the F-15 as good as it is.

Sorting is the ability to detect all entities within a piece of sky, and assign targeting responsibilties. One benefit of a good sort process is excellent situational awareness, and a maximum number of targeted bandits. This guy apparently has flown in a number of fighters, and I would take what he says about this particular MiG-29's radar capabilities at face value.

If the engines indeed smoke, that is an extremely bad characteristic.

F-4's smoke when they are not in afterburner, making them very easy to see. To attempt to hide, they usually go min AB approaching a merge, which hides the smoke, but turns him into a screaming hot source for all-aspect heat seeking missiles.

The numbers associated with G loadings, airspeeds, and external fuel are also very revealing.

In older days (3 decades back) the only aircraft USAF personnels feared was the F-16. Everything else (F-14, FA-18 - no super hornets then - Tornado, Everything that flew was easy target to them. Only the F-16 could compete, and then only if they survive to the merge.

There is no excuse for an F-16 to EVER lose a turning fight. It is a phenominal turning airplane.

F-16 when properly flown, is a match for anything airborne with the possible exception of the advanced Sukhois, where there will be parity, and of course the F-22.

I see the Sukhoi design bureau skyrocketing, while the great MiG bureau is in decline, which is interesting when you consider MiG designed the very best Soviet fighters since 1940's.
 
.
Hi,

The colonel rips apart the mig 29 as ruthlessley as he can while looking so calm and cool. Literally tears apart the pride of russian airforce and russian air force pilots.

Cold war relics.
 
.
actually i asked how much time require to built one f-16 jet...secondly i asked that anybody tell me date of delivery of mlu kits.
 
.

Latest posts

Pakistan Defence Latest Posts

Back
Top Bottom