Thunder.Storm
FULL MEMBER
- Joined
- Apr 8, 2015
- Messages
- 584
- Reaction score
- 0
- Country
- Location
Follow along with the video below to see how to install our site as a web app on your home screen.
Note: This feature may not be available in some browsers.
really,
To make such claims , I am sure you must be aware of the peak power / module of T/r or the quad module set., Please do share with us what would be average and peak demand for a 800 tr module of the chinese radar, and estimate the dry power peak requirement for the radar to function.
Before making your usual claims remember though that a mig 29 with two of the same power plants as the Jf17 , offers an AC 3 phase power supply through a 2P alt at 115/200 V, 400Hz freq constant irrespective of engine rpm, max power output is at 30KVA, on the same shaft assm there is smaller brushless DC module, producing 1.5KVA, The ADC combine with Sine wave filter provides DC power for the system bus. 30KVA through the trfm, though is not available all to the radar, Low side DC bus powers all the llid's(low lev int devices), Servos, and relays, and the high side terminal strip powers the fuel pumps, Hydraulic pumps, Avionics through a distributed three phase supply.
Now provided JF17 has Half of the power available at the genset, how on earth will you power a AESA radar 800T/R channels ( which btw is 148 channels more than the Zhuk AE -FGA 29)
only bother to reply if you have any real content.
thanks
What version of RD-33 that you are quoting this data from?
secondly, newer version of avionics require a lot less power or power loss than older version used on mig-29 that is used by IAF
how about substantiating your "lot less power", what are the specs on a JF17 3P alt? what is the terminal strip rated for? What is the rating for fuel pump and oil pump? what is the radar peak i/p power, given the klj7 is derived from a klj 9 which itself is developed from the Zhuk MSE?
btw, the specs are for Mig29M variant, which is quite irrelevant, the transformer are constant 400hz, through hydraulic transmission, so irrespective of engine rpm your PTO will give you the same power unless you change your entire generator setup.
is it twice of that on a RD33MK? or is that what you are trying to imply...Please don't ask question on a question. do you know or you do not know the specs of PF of newer version of rd-33 like rd-93b used on JFT.
is it twice of that on a RD33MK? or is that what you are trying to imply...
are we dealing with water car engineering now?
really,
To make such claims , I am sure you must be aware of the peak power / module of T/r or the quad module set., Please do share with us what would be average and peak demand for a 800 tr module of the chinese radar, and estimate the dry power peak requirement for the radar to function.
Before making your usual claims remember though that a mig 29 with two of the same power plants as the Jf17 , offers an AC 3 phase power supply through a 2P alt at 115/200 V, 400Hz freq constant irrespective of engine rpm, max power output is at 30KVA, on the same shaft assm there is smaller brushless DC module, producing 1.5KVA, The ADC combine with Sine wave filter provides DC power for the system bus. 30KVA through the trfm, though is not available all to the radar, Low side DC bus powers all the llid's(low lev int devices), Servos, and relays, and the high side terminal strip powers the fuel pumps, Hydraulic pumps, Avionics through a distributed three phase supply.
Now provided JF17 has Half of the power available at the genset, how on earth will you power a AESA radar 800T/R channels ( which btw is 148 channels more than the Zhuk AE -FGA 29)
only bother to reply if you have any real content.
thanks
really,
To make such claims , I am sure you must be aware of the peak power / module of T/r or the quad module set., Please do share with us what would be average and peak demand for a 800 tr module of the chinese radar, and estimate the dry power peak requirement for the radar to function.
Before making your usual claims remember though that a mig 29 with two of the same power plants as the Jf17 , offers an AC 3 phase power supply through a 2P alt at 115/200 V, 400Hz freq constant irrespective of engine rpm, max power output is at 30KVA, on the same shaft assm there is smaller brushless DC module, producing 1.5KVA, The ADC combine with Sine wave filter provides DC power for the system bus. 30KVA through the trfm, though is not available all to the radar, Low side DC bus powers all the llid's(low lev int devices), Servos, and relays, and the high side terminal strip powers the fuel pumps, Hydraulic pumps, Avionics through a distributed three phase supply.
Now provided JF17 has Half of the power available at the genset, how on earth will you power a AESA radar 800T/R channels ( which btw is 148 channels more than the Zhuk AE -FGA 29)
only bother to reply if you have any real content.
thanks
I am not going to comment on the how, or what. But as stated before, the issue with AESA on the JF is related to cooling and NOT power.Now provided JF17 has Half of the power available at the genset, how on earth will you power a AESA radar 800T/R channels ( which btw is 148 channels more than the Zhuk AE -FGA 29)
sure...Hi,
Even though post s not addressed to e---I will just indulge a little bit----. First of all---technical information is not available and secondly---it won't be given out just yet----.
The other thing is---that it will come with aesa---. It is not a 800 T/R modules aesa---it actually is a 1000 T/R module unit----.
Some things you just have to wait and see.
Oscar the right hand of Cthulhu our savior.Oscar who?
Eurofighter, Gripen, and loads of other aircraft have IRST. Modern automated IRSTs are as much work load as a modern radar.
Oscar the right hand of Cthulhu our savior.
What I did say, is that the IRST system has to have automation and sensor fusion comparable to a Radar so that unlike the generation that goes into previous gen Su's.. its not a burden on the pilot to operate and have to switch on and off between sensors. Sure, he could do it.. just like he could do Radars. But that is taking away the whole idea of ease of operation.
The benchmark for an infra-red sensor now in terms of sensor integration is the F-35' EOTS. Can something similar be done? I have mixed thoughts.
What is the scalability of the T/R modules count for an AESA? As in, by decreasing a larger AESA to a smaller one, how does the peak power vary? If we take the a simple ideal, circular cross section and it's Pi*Radius*Squared area, then a slight increase or decrease in the area (and hence the T/R modules) would result in a larger difference in the performance. No? Since the size of the T/R modules remain the same and they are solid state, it should be easy in scaling? Just like a certain size transistor, you can pack almost double if the node is halved, in the same area or you can double the count by doubling the die area?