The International ARM Race: Rise Of The Chinese SoC
By
Lucian Armasu, Dorian BlackAUGUST 28, 2014 12:00 AM
- ARM-Based SoCs From China Are Poised To Take Off
Thanks to low prices and a gradual increase in both quality and performance, Chinese chip makers are starting to pose serious problems for Qualcomm, Nvidia and others.
Rockchip, Allwinner, Spreadtrum, and MediaTek are brand names that a lot of people probably won't recognize. But all of those companies are competing in the same space as Samsung, Qualcomm, and Nvidia for share of the Android-based device market.
When people talk about Android, they often mention products like the Nexus range from Google, the Galaxy line from Samsung, or one of Asus' Transformers, along with HTC, LG, and Sony. And sometimes, depending on the success of marketing campaigns and word of mouth, what also follows are the names of the SoCs powering those smartphones and tablets. Exynos. Snapdragon. Tegra. But that's only part of the story...As more companies compete for your dollar with an ever-increasing portfolio of mobile devices, we're seeing Chinese SoC manufacturers steadily staking claims in the low-cost Android device market. Android, iOS, and mobile computing in general are largely dependent on one U.K.-based company, ARM Holdings. Its history dates back to one of the first commercially successful home PCs of the early 1980s: the 8-bit BBC Micro. This computer was one of three that set the British and European home PC market in motion. The BBC Micro's war with another 8-bit system, the Sinclair ZX Spectrum, is now computer legend.
Following the resounding success of the BBC Micro, Acorn (as the company was then known) cut its modern computing teeth on nascent adventures into the optimization of 16-bit CPUs. By intelligently simplifying and removing often-repeated instructions, Acorn developed a more efficient design that could do more with less. This approach is known as RISC, or Reduced Instruction Set Computing. The company's first commercial foray using this technology came in 1983 with the 16-bit Acorn RISC Machine, or ARM. It ran one of the first true multitasking operating systems in production, RISC OS, which, incidentally, was recently re-released as an open-source variant for the popular Raspberry Pi hobbyist PC—yet another device powered by an ARM SoC.
ARM’s emphasis on efficiency powered the company's own range of RISC PCs and operating systems for the next decade. ARM Holdings would later go on to design low-powered RISC-based SoCs for all manner of devices, starting with simple disk controllers and eventually winding up in the mobile computing SoCs at the heart of everything from the Compaq iPAQ to the Apple iPad—and, of course, the vast majority of Android devices.
This ubiquity happened when ARM Holdings cleverly removed manufacturer from its résumé. As part of a trend set in the late 1970s, ARM became a fabless semiconductor designer, allowing it to focus exclusively on design and constant improvements to its RISC architecture without worrying about manufacturing technology. That decision accelerated development and allowed some of the costs incurred during the design process to be offset by ARM licensees, which take the IP and determine how to implement it.
Such an approach has benefits beyond cost savings because it also allows for licensees to customize their SoCs to suit specific purposes. Aspects like the actual GPU, RAM, and modem can be selected, and often even modified, to satisfy any function or budget constraint. You could almost say that ARM SoCs can be built to order, which is of particular importance for companies that want to create devices for so many different needs and markets.
Given a diverse market with room for innovation
and a sensitivity to cost, ARM SoCs and the fabless semiconductor industry present an exceptionally good fit for China.
2. China Needs Android, Not Google
Android is central to Chinese success in the mobile marketplace. Independent hardware vendors (IHVs) utilizing Chinese SoCs for their tablets tend to use Google’s OS because it's cost-free and open-source. Android is what allows $100 to $200 devices to work just as well as $600 flagship devices. Some buyers of China-made tablets may brag that their budget devices can do everything the more premium products can do. In some ways, they are right. But the story isn’t that simple. In many cases, "cheap" can also be code for "unsupported and closed-source."
And therein lies the problem. While Android (specifically, the Android Open Source Project) is open source, many of the Chinese SoC vendors aren’t true to the initiative’s spirit. There's been some valid criticism aimed at some of these companies and the ways in which they enjoy the benefits of being part of the Android experience, yet don't actually give much back in return. Companies like Rockchip, MediaTek. and Allwinner are unapologetically closed source when it comes to their kernels, making it difficult for owners of products based on those platforms to move beyond the version of Android that shipped with their devices. Furthermore, this also makes it nearly impossible for these devices to properly utilize aftermarket ROMs like CyanogenMod, Paranoid Android, and AOKP.
There have been some strides made on the Rockchip front; for instance, a Spanish tablet manufacturer opened up the source for its kernel. In turn, a beta version of Ubuntu surfaced for the SoC. Ithas since grown up, settled down, and now goes by the unfortunate name of PicUntu. The distribution has been making the rounds in the HDMI media stick communities, and is generally well-regarded. While it doesn't include full hardware acceleration, it's full-featured in almost every other aspect.
Still, that's Linux. Most RK3066 owners are stuck using older versions of Android, and the situation doesn't seem like it's going to change anytime soon. Meanwhile, the more modern quad-core RK3188 has yet to see a Linux variant. And that's even more disappointing since, in some cases, RK3188 devices ship with 2 GB of RAM and are far more powerful than the older RK3066.
For these reasons, Chinese SoCs and the devices they power tend to be somewhat devalued compared with their more prominently-branded equivalents from Qualcomm, Samsung, and Nvidia. Even though those familiar names and their partners do sometimes engage in closed-source, locked-down shenanigans, alternatives to their preinstalled versions of Android often do exist. XDA has countless forums for devices with Snapdragon, Exynos, and Tegra SoCs. Yet, the community push for China-based SoCs just isn't as effective. Most owners are left to "alternative solutions" on smaller forums, many of which lack support or are simply administered unprofessionally.
Also worrying, some of these Chinese companies are forking Android. They're doing it to avoid having to appease Google's Open Handset Alliance (OHA), and to ship their own software storefronts instead of Google Play.
Right now, we're seeing two major Android forks coming out of China: LeWa OS and the controversial Aliyun OS, the latter of which has been caught offering pirated versions of for-sale Android games, which could become a big problem down the road.
To make things worse, other China-based Android variants are not being particularly friendly with the open-source community: Flyme and MIUI. Flyme is available on Meizu's range of phones, while MIUI can be found on phones from Xiaomi or as a ROM for other devices. Both skin the OS in much the same way as HTC's Sense or Samsung's TouchWiz. The issue lies in the fact that both of these Chinese operating systems are closed source, which flies in the face of Android's AOSP GPL license. It also sets a worrying precedent that further releases may remain that way, again locking users into non-upgradable software experiences.
That trend probably worries AOSP fans and ROM developers, particularly in regard to how it may affect future China-based SoCs and devices.
Now, let's take a closer look at some of China's homegrown SoCs, starting with Rockchip.
3. Rockchip
Founded in 2001 and based in Fuzhou, China, the Fuzhou Rockchip Electronics Co. Ltd., or simply Rockchip, designs and develops integrated circuits, particularly SoCs. The company is a well-established ARM licensee, utilizing the IP company’s architecture for the majority of its products. Rockchip's focus has been predominantly on the tablet and personal media player (PMP) markets, so Rockchip SoCs do not include support for radios other than Wi-Fi.
SoC
CPU Core
GPU Core
Max Resolution
Camera
Video Encode/Decode
RK2918
Cortex A8 (1-core) @ 1.0-1.2 GHz
Vivante GC800 @ 575 MHz
1280x800
5MP ISP
1080p @ 30 FPS
RK3066
Cortex A9 (4-core) @ 1.6 GHz
Mali-400 MP4 @ 400 MHz
2048x1536
5MP ISP
1080p @ 30 FPS (h.265/VP9 support)
RK3026
Cortex A9 2-core) @ 1.0 GHz
Mali-400 MP2 @ 330 MHz
1920x1080
5MP ISP
1080p @ 30 FPS
RK3168
Cortex A9 (2-core) @ 1.2-1.5 GHz
Mali-400 MP4 @ 400 MHz
1920x1080
5MP ISP
1080p @ 30 FPS
RK3188
Cortex A9 (4-core) @ 1.6 GHz
Mali-400 MP4 @ 600 MHz
2048x1536
5MP ISP
1080p @ 30 FPS (h.265/VP9 support)
RK3288
Cortex A17 (4-core) @ 1.8 GHz
Mali-T764 @ 400MHz
3840x2160
13MP ISP
1080p @ 30 FPS / 4k @30 FPS
RK2918
Released in 2012, the
RK2918 was Rockchip's first ARMv7 chip. It used a Cortex-A8 CPU and Vivante GC800 GPU, supporting a display resolution of up to 1280x800, though it could encode and decode video of up to 1080p. The notable feature of this processor is that it was among the first to support the open-source VP8 codec.
RK3066
Released in 2012, the Rockchip RK3066 is a 40 nm, 1.6 GHz, dual-core Cortex-A9 SoC coupled with the Mali 400 GPU and up to dual-channel DDR3 support. It was designed to compete with the dual-core Samsung Exynos 4, and benchmarks proved its mettle, with the RK3066 registering around 7000 points in AnTuTu at the time.
In some ways, it went beyond its competitors' capabilities, offering support for faster memory, an upper limit of 2 GB (though implementations were rare) and five-point multitouch panels up to 1920x1080 (which, as far as we understand, never surfaced in devices, perhaps due to it being a largely budget-focused chipset).
RK3066 was sold extensively in tablets from a wide variety of Chinese and European manufacturers, including Cube, Pipo, and Archos. In fact, Archos was still releasing RK3066-based devices in late 2012. That included some products in the company's budget line, Arnova, and the game-focused Gamepad, which includes a hardwired gaming controller. RK3066 also powered the OUYA competitor, GameStik.
RK3066 devices tended to be most popular in the budget 10-inch range of early- to mid-2012, and continued to sell well throughout the year. Another area of success for RK3066 was the HDMI stick form factor. Indeed, RK3066 quite clearly put HDMI Android Media devices on the map, with more than 20 such devices released over the 2012 period alone.
Interestingly, Archos released the 97 Titanium HD, which pushed the RK3066 beyond its theoretical limits by powering a 2048x1536 "Retinal" display. And while it didn't perform as smoothly as its 800p brothers in games, it still held its own in terms of browsing and general day-to-day tasks, proving the RK3066 to be extremely versatile.
RK3188
Building on the success of the RK3066,
RK3188 ups the ante considerably by pushing into quad-core territory. The budget-oriented tablets that use it are in a performance tier previously reserved for premium devices like the Tegra 3-equipped Transformer Pad Infinity.
Excitement for this 28 nm quad-core Cortex-A9, Mali MP4-equipped SoC was so high that there was a record-breaking number of preorders for devices like the Cube U30GT2 and PIPO M4 Pro. The bump in GPU speed and CPU power meant that more devices with 1920x1200 screens were released, and the RK3188 SoC handled that gracefully, partly because almost all those devices came standard with 2 GB of DDR3 RAM. In fact, the only RK3188 devices that shipped with only 1 GB of RAM were budget HDMI media sticks.
Benchmarks put this chipset around the 14,000- to 18,000-point mark in AnTuTu, landing beyond Tegra 3's space at a lower price.
RK3168
Considering it has only a dual-core Cortex-A9 processor complex and a GPU that’s more commonly included with Cortex-A7-based SoCs, the
RK3168 is a more budget-conscious revision of the RK3188. It's designed to ship in smaller, 7-inch tablets, which tend to be less expensive.
RK3288
The
RK3288 is Rockchip's latest and most powerful SoC, and is expected to surface this year. It comes with a quad-core Cortex-A17 processor at 1.8 GHz, and a Mali-T760 GPU. Initially, Rockchip was supposed to use the Cortex-A12 core, but since ARM announced Cortex-A17 quite suddenly, improving Cortex-A12, Rockchip quickly updated its SoC to use the newer IP instead.
Cortex-A17 will target the mid-range market in 2015, while Cortex-A57 remains at the high end, possibly improved. Unfortunately, the -A17 core isn't based on the new and improved ARMv8 architecture, and it's still a 32-bit chip. That's disappointing for a piece of hardware surfacing in 2015, but Rockchip most likely chose it because of cost considerations. Rockchip sells some of the lowest-cost SoCs for mobile devices. It's also why the company chose the Cortex-A17 instead of something even more powerful for its mid-range chips.
On the GPU side, it doesn't look like Rockchip spares any expense, since the company is using a high-end Mali-T764 GPU. Considering Rockchip is mainly targeting tablets, it's not too surprising to see it match a high-end GPU with a more modest CPU. Tablets tend to use higher resolutions than phones, and a more powerful GPU can make sure the tablet doesn't overheat and doesn't use up the battery too quickly.
The GPU also supports the latest mobile graphics features, along with support for 4K video decoding. It even supports HDMI 2.0 and 10-bit color, in case you want to hook the tablet up to a 4K TV.
Rockchip recently partnered with Intel to build some 28 nm non-FinFET SoCs using the Atom core and branding. Intel hopes that with this partnership, it can lower the cost of Atom and push it into less expensive platforms. It remains to be seen how competitive these chips will be, particularly since Intel’s own 22 nm Atoms are barely fast enough to compete with high-end ARM chips. These SoCs will most likely be targeted at the mid-range market, and also use Intel's 3G modems. In the meantime, the ARM-based RK3288 will arrive with support for 4G LTE this year.