Blue Marlin
SENIOR MEMBER
- Joined
- Jul 7, 2015
- Messages
- 6,688
- Reaction score
- 6
- Country
- Location
simple problem is..... no money. once you add money then you can invest in getting more people and training them and also getting the best facilities.
Follow along with the video below to see how to install our site as a web app on your home screen.
Note: This feature may not be available in some browsers.
Yes, NP-Complete, I would like to approach solid investors who could also possibly handle HR-related issues and be a part of accounts management however all the scientific work will be done by independent scientific teams that we will slowly grow as cash flow becomes better. We could work on the design of advanced mathematical technologies from scratch by building on available research and using our expertise. We could then license these mature mathematical technologies to other business groups on a profit sharing basis.
There is tremendous amount of work that can be done like for example, choosing a bit random example, the physical design and design of material composition of blades of wind turbines. I would give a layman idea of the simulation of the moving blades of a wind turbine. In a large simulation, we will have a design of the blade with the whole blade divided into a large number of very small segments (or finite elements). Given a certain angle and speed of wind flow, each segment rotating around a larger axis will have its own angle of contact with the air and the speed of segment, speed of the air and angle of contact would determine how much force air transfers to the segment when there is an impact. Then there are other variables like what are the properties of the material of the blades that would determine its moment of inertia or related angular momentum everywhere. Then we would have to integrate/sum force generated by the impact over all small finite elements over all the turbine blades and also sum the related properties of moment of inertia and angular momentum of the blades and also consider any friction, drag or turbulence and then determine the speed of the wing and power produced etc. Later we could decide what are the optimum properties of the materials that are required for strength, and efficiency of the wind turbine. Once a simulation design is ready on computer it can be constantly and very easily altered to find optimum variables like blade size, local blade angles along the length of the blade, blade material and all other relevant parameters. All of this is not very difficult to put in the form of a comprehensive computer simulation of the wind turbine for most talented applied mathematicians. A single large wind turbine that produces 1MW at its peak capacity can cost more than 5 crores in international market. We can manufacture it roughly in 1 crore rupees if there is enough production size. Of course this is a very rough idea.
Similarly I feel real pain when I see my country trying to find badly needed jet engine for her fighter jets to defend our country. No western country gives us those engines and usually we have to pay through our nose to get them. Even Russians are not willing to sell the best engines. I really think it is possible to design a comprehensive 3-D computer simulation composed of a very large number of extremely small segments of the moving parts and moving fluids in the jet engine with a complete simulation of what is the speed of air-intake in very small 3D segments and then the comprehensive simulation based on first mathematical principles coupled with each other in the most sophisticated way. The simulation would give a micro-second by micro-second snapshot of variables like speed of air-intake at a certain 3-D coordinate, pressure there and thrust after burning of fuel all sort of other related variables. A complete comprehensive design can take, for example a year or two to develop, but once it is developed it will be extremely easy to do all sort of changes considering the requirement of jet engine body materials, design requirements for brute force thrust when needed, or design requirements of optimum fuel efficiency. Once a better technology is ready, the manufactured engines could sell for several tens of millions of dollars anywhere in the world.
I would also like to invite Pakistan Army since it is a patriotic force in Pakistan to invest in my company or make a very small joint venture initially that could grow with time so that we can develop all sorts of advanced peaceful and defensive applied mathematical technologies. I do not have any unnecessary demands but I want a peace of mind and protection from ill will that some foreign nations harbor for us. There is an extremely huge amount of work we can do in the area of advanced mathematical technologies and we need to that in our country before it is too late.
We can generalize this approach as accounting for the effect of relevant variables over infinitesimals over which they can be considered as constants and then adding up these infinitesimal effects to get the net effect.Yes, NP-Complete, I would like to approach solid investors who could also possibly handle HR-related issues and be a part of accounts management however all the scientific work will be done by independent scientific teams that we will slowly grow as cash flow becomes better. We could work on the design of advanced mathematical technologies from scratch by building on available research and using our expertise. We could then license these mature mathematical technologies to other business groups on a profit sharing basis.
There is tremendous amount of work that can be done like for example, choosing a bit random example, the physical design and design of material composition of blades of wind turbines. I would give a layman idea of the simulation of the moving blades of a wind turbine. In a large simulation, we will have a design of the blade with the whole blade divided into a large number of very small segments (or finite elements). Given a certain angle and speed of wind flow, each segment rotating around a larger axis will have its own angle of contact with the air and the speed of segment, speed of the air and angle of contact would determine how much force air transfers to the segment when there is an impact. Then there are other variables like what are the properties of the material of the blades that would determine its moment of inertia or related angular momentum everywhere. Then we would have to integrate/sum force generated by the impact over all small finite elements over all the turbine blades and also sum the related properties of moment of inertia and angular momentum of the blades and also consider any friction, drag or turbulence and then determine the speed of the wing and power produced etc. Later we could decide what are the optimum properties of the materials that are required for strength, and efficiency of the wind turbine. Once a simulation design is ready on computer it can be constantly and very easily altered to find optimum variables like blade size, local blade angles along the length of the blade, blade material and all other relevant parameters. All of this is not very difficult to put in the form of a comprehensive computer simulation of the wind turbine for most talented applied mathematicians. A single large wind turbine that produces 1MW at its peak capacity can cost more than 5 crores in international market. We can manufacture it roughly in 1 crore rupees if there is enough production size. Of course this is a very rough idea.
Similarly I feel real pain when I see my country trying to find badly needed jet engine for her fighter jets to defend our country. No western country gives us those engines and usually we have to pay through our nose to get them. Even Russians are not willing to sell the best engines. I really think it is possible to design a comprehensive 3-D computer simulation composed of a very large number of extremely small segments of the moving parts and moving fluids in the jet engine with a complete simulation of what is the speed of air-intake in very small 3D segments and then the comprehensive simulation based on first mathematical principles coupled with each other in the most sophisticated way. The simulation would give a micro-second by micro-second snapshot of variables like speed of air-intake at a certain 3-D coordinate, pressure there and thrust after burning of fuel all sort of other related variables. A complete comprehensive design can take, for example a year or two to develop, but once it is developed it will be extremely easy to do all sort of changes considering the requirement of jet engine body materials, design requirements for brute force thrust when needed, or design requirements of optimum fuel efficiency. Once a better technology is ready, the manufactured engines could sell for several tens of millions of dollars anywhere in the world.
I would also like to invite Pakistan Army since it is a patriotic force in Pakistan to invest in my company or make a very small joint venture initially that could grow with time so that we can develop all sorts of advanced peaceful and defensive applied mathematical technologies. I do not have any unnecessary demands but I want a peace of mind and protection from ill will that some foreign nations harbor for us. There is an extremely huge amount of work we can do in the area of advanced mathematical technologies and we need to that in our country before it is too late.
Enough to know that you produce junk after junk, as for your so-called indigenous missiles like the "Brahmos" enough said, if I was you I would stop posting any further drivel, everyone on this forum must be laughing at you...DRDO is a success story , even the Indians do not believe this so I will do you a favour and tell you to tone down your nonsensical claims or else every blogger will think you belong in some kind of asylum.kudos
Indians that know anything know that several of DRDO's labs are preforming decent and good actually.
New Recruit
Hard to understand your point with a name like
Pakistan's Best Friend is China..NO...Turkey...NO...Saudi Arabia..NO.......DRDO...YES YES...YESDude, what do you even know? Seriously. Labs dealing with ballistic missiles managed to induct and productionized Agni 4 is record time. Agni 5 is also one test away from being inducted, and it was flawlessly canistered fired. K15 and K4 SLBMs have flawlessly fired from pontoons and from Arihant itself. They're on to ASAT, MIRVed missiles, etc. now.
Materials wing have developed and given ToT of titanium sponge, warship grade steel, composite armor for tanks, helicopters, etc. Naval subsystems like 3D radar, EW system, sonars, torpedos, etc. have been been inducted or near it. The radar division is on to ground based AESA radars, awacs systems, etc.
If you're following them closely, several of the labs are maturing, especially labs dealing with radars, optics, tactical missiles, etc. Please even consider their budget as well.
Pakistan's Best Friend is China..NO...Turkey...NO...Saudi Arabia..NO.......DRDO...YES YES...YES
Nitpicking here on an otherwise splendid post.(In case anyone points out, the great Satyendra Nath Bose, FRS, after whom the 'Boson' is named; was not Indian but IMO a Bangla Deshi)
We can generalize this approach as accounting for the effect of relevant variables over infinitesimals over which they can be considered as constants and then adding up these infinitesimal effects to get the net effect.