SIDE STICK VERSUS CONVENTIONAL CENTER STICK
Both the Hornet and Viper use fly-by-wire flight-control systems, which means aircraft response is governed by a set of programmed flight-control laws that "live" in the flight-control computers, which I affectionately refer to as "George." In other words, the pilot isn't flying the airplane, George is. The pilot tells George he wants the airplane to do something, and George then zips through the math to figure out which flight-control surfaces should be moved to fulfill the pilot's request. The big difference (and it is a big one) is that the Hornet uses a conventional center stick, and the computer senses stick position to interpret what the pilot wants. The Viper uses a side stick, and the computer senses stick force from pilot input.
Flying a side-stick control takes a while to get used to, but once you do, it's a joy. The conformai stick's shape feels very natural (it fits in the hand like a melted candy bar), and it allows easy access to nine of the 16 hotAS controls. Two fully adjustable forearm rests on the right cockpit bulkhead stabilize and isolate the pilot's arm and wrist, so when rattling around the cockpit during turbulence or going after the bad guy, the pilot's arm won't accidentally move and initiate unwanted control inputs. In its original design, the Viper's control stick didn't move at all; it just measured pressure from the pilot's hand. However, after initial F-16 flight tests, a ¼ inch of stick movement was incorporated to give a small dead band and a nominal breakout force to give better "feel" of a neutral stick because otherwise it was entirely too sensitive. The control harmony is quite good (the pressures required for pitch and roll mix well), but without the capability to physically position the stick, it's easy to contaminate roll inputs with unwanted pitch inputs, and vice versa.
My first Viper instructor predicted that I would over-rotate on takeoff and drop the right wing; he was right. The over-rotation occurs because a pilot is used to "moving the stick and then something happens" at rotation speed. When I reached 145 knots and pulled back, of course the stick didn't move but a scant ¼ inch, so I pulled more. The inexperienced have no way of knowing how hard to pull, so I pulled probably twice as hard as was necessary. After a half-second delay, the nose abruptly responded to my input and pitched up to about 10 degrees, while at the same time the right wing dipped to about 10-degrees wing down. I released back-stick pressure, and the aircraft held 10-degrees pitch as I gently leveled the wings. According to my instructor Lt. Col. Dan Levin, who has more than 3,000 Viper hours, pilot-induced-oscillations (PIO) are very common on takeoff for transition pilots.
http://www.f-16.net/forum/viewtopic.php?t=3477
You cannot have a pilot alternate between two aircraft types, you always transition pilots from one type to the next and this process usually takes months.