This Is What Makes the USS Gerald R. Ford the Best Aircraft Carrier Ever Designed
Evolution of an Aircraft Carrier
The Ford is really the next generation of the Nimitz class. The hull is the same size, but the vessel has been optimized and modernized, to make it a far more capable ship. The new design relocates the island house (the primary flight control and the bridge), reduces the number of aircraft elevators from four to three, and increases the sortie rate by 25 percent, helping to more quickly deploy aircraft, ships, or sets of troops.
The Ford also has three times the electric plant capacitya capability meant to last through technology changes over its lifespan of fifty years. A new nervous system includes millions of feet of fiber optic cable, which greatly increases data speeds and capacities, and also adds durability, as fiber optic cable can endure marine life better than metal alternatives.
The Automated Sailor
This city on the sea has a lower population than its predecessor. "Nimitz was designed when the Navy had more sailors," Newport News Shipbuilding's President Matt Mulherin told us. "At the time, I don't think they really thought about what the cost of an individual sailor was. Today they do. That drives a lot of the operating and maintenance costs of the ship. So we've taken off a lot of bunks, and taken off workload for a lot of sailors... but it retains all of the functionality of the Nimitz-class ships."
The ship is more automated than any before it, which gives it increased capability despite the reduced crew. For the sailors that are there, things will be more comfortable. The whole carrier will be air-conditioneda firstwhich adds comfort and also reduces components' and computers' corrosion from exposure to salt air.
Electromagnetic Airplane Slingshots
Nimitz-class carriers got planes moving for takeoff using steam-actuated catapults. The system required a lot of steam piping, a large condensate return, and tons of fresh water. They also have a lot of maintenence issues. Plus, with steam-actuation, the majority of the force is being transferred to the airplane at the beginning of the strokeit's one hell of a jolt. But a more linear pattern of acceleration could put less stress on an airframe, and thus get a longer lifespan out of the multi-million dollar plane. That's where EMALS comes in.
EMALS stands for Electromagnetic Aircraft Launch System. It uses a linear induction motor with an electric current to generate a magnetic field. That field then propels a carriage down a track. It's basically a gigantic railgun that launches airplanes instead of shells. Pretty damn cool.
The EMALS can accomodate lightweight drones and planes heavier than those we have today. It reaches top speeds gently, reloads more quickly, and requires less maintenance. The arresting gear (the mechanism which catches the planes as they return) will use EMALS technology as well, as will the elevators for the airplanes and weapons. The Ford class essentially eliminates steam from the equation.
Why Carriers Matter
"The four and a half acres of flight deck is what you really need to get that lethality," according to Mulherin. "Having the ability to do a catapult-launch of an airplane gives you the ability to load it with weapons and load it with fuel. If you do some kind of a vertical takeoff, you can add fuel in flight, but you can't add weapons, so it really limits its capabilities."
"The second thing is that size is cheap. Once you decide to build an aircraft carrier, you get some threshold of fundamental cost, and then to go from a medium-sized nuclear-powered aircraft carrier to a large deck, it's incremental cost, and you get more value for that incremental cost."
It's amazing to see a monolith like this still under construction. Nothing has been painted, and it's been in progress for years, so everything looks rusty, despite it being brand new. Inside, the various compartments are coming together. The rooms are designed to be modular, so for future upgrades, designers can just swap a box in and lock it down.
The ship is scheduled to be water-tight in 2013. That's when it will be christened, and the dry dock will be flooded. It will then be towed to a different dock at Newport News Shipbuilding where construction will continue until 2015. When its nuclear batteries go in, the Ford will be fully operational. The Ford will only need to be refueled once in its lifetime, 25 years after it launches. By then, this lighter, cheaper, more powerful carrier will have already made the seas a safer place.