What's new

Poor Israeli parts delay Arjun Mk-II

Please do a 3D model comparison to silence these people. Whatever you say, i will accept :)

3D model comparison !?
-39-.gif
 
.
We use foreign components but all testing, development completed within India but you can not say same for Pakistan.
Just look at the example of their home built fighter they are waiting for China to develop MK2 version.

Any evidence? Stop talking about others when your self is just as bad or worse.
 
.
care to tell how sir you dint answer my post and when you have no answer you pass it of as fanboy post please care to tell me how will PA fight off the indian Tanks in a bettle (please no atim bumb here )


Dint get it bro kindly do elobrate thanks in advance :)
9A4172 Vikhr (Russian: Вихрь, English: Whirlwind) (NATO reporting name: AT-16 Scallion) is a Russian laser guided anti-tank missile system. "9K121" is the GRAU designation for this system. The missile is air-launched fromMi-17-1V, Ka-50, Ka-52 helicopters and Su-25T aircraft. It is believed to have entered service around 1990, having been first shown publicly at the 1992 Farnborough Airshow.

3UBK-Invar

Bharat Dynamics (BDL) signed a contract with MOD for Invar anti-tank guided missiles on 19-Aug-2013.[52][53] It is reported that 10000 will be procured from Russia while BDL will manufacture 15000.[54]

Manufactured locally in India. Another 10000 Konkurs-M ordered in a USD 250 Million.[51]
 
.
India can't build any military equipment with or without foreign tech, delay after delay come as expected.

so what you want?It is our problem.We dont need your certificate.If our system has any problem we can tolerated that.You have no role here.
 
. .
Really? Your AK is a souped up version of China's Type 90 that they discarded in the 80s as a useless platform! You guys added something here and something there and re-christened it as Khalid or MBT 2000.

Lmao we alreDy use upgrade type-90IIMs ..:lol:

Type 96 was the basis o AK..

Unlike your German design elephant..

And what has Pakistan produced? Nix. It just assembles knocked down kits!

Oh you are a genius..:lol:

Even the engine is the KMDB 6 TD-2 diesel 1200 hp engine imported from Ukraine.

True it's Ukrainian .. Arjun uses indian right ? Lol nope German design .. German engine.

the transmission? KMDB design bureau, Ukraine and another ver equipped with the French-designed hydro-mechanical auto transmission, the SESM ESM500.

Lmao first clear your thought kiddo.. And be sure it isn't supplied by

to all this a Western fire-control system (FCS) and gun control system (GCS)!!

Pak also produces PAKFIRE FCS.. :lol: and tell us about GCS?

It also has a Ukrainian Varta electro-optical jammer and Sagem thermal imagers.

It's a Pak modified VARTA-1 .. Arjun doesn't even have one..
Tell us about laser protection n warning systems.
Data link

IBMS

Tank gun

Avionics

design

RCS

Armour

ERA

NERA

NBC suite

Etc etc?

So to my Pakistani friends who waste no time bashing the Arjun as only 60-70% indigenous, how about your AK? what's so indigenous about it? People in glass houses shouldn't be throwing stones! :P

Lmao 60-70% ? Lmao

60% stuff is still imported .. Hence the delay..:lol:
 
. .
It's a Pak modified VARTA-1 .. Arjun doesn't even have one..
Tell us about laser protection n warning systems.
Data link
IBMS
Tank gun
Avionics
design
RCS
Armour
ERA
NERA
NBC suite
Etc etc?
For ensuring MBT survivability, the Defence Metallurgical Research Laboratory (DMRL)—located inKanchanabagh, Hyderabad—has developed a Mk2 variant of its Kanchan modulararmour, which was made by sandwiching composite panels (ceramic, alumina, fibre-glass and nickel-alloy) between rolled homogenous armour (RHA) plates to defeat APFDS or HEAT rounds. At the same time, the DRDO’s Pune-basedComposites Research Centre (CRC) and the Research and Development Establishment, Engineers [R & D E(E)], have developed multi-layered multi-functional fibre-reinforced polymer (FRP) composite hull/turret sub-structures at much lower weights in comparison with metallic counterparts. More than 40 per cent weight savings over steel hull structures have been achieved. Also developed for the Arjun Mk2 is co-cured composites integral armour (CIA), which comprises ceramic tiles and rubber sandwiched between two FRP composites layers. While the outer FRP composite layer acts as a cover and provides confinement, the ceramic layer provides primary protection against ballistic impact, and the inner FRP composite layer acts as the structural part as well as secondary energy absorbing mechanism. The rubber layer isolates stiff and brittle ceramic tiles from structural member.

The CVRDE, with IMI’s help, has also redesigned the Arjun Mk1’s turret to incorporate modular sloped armour fittings, and has developed a slat-armour package to protect the MBT against anti-tank rocket-propelled grenade (RPG) attacks. It functions by placing a rigid barrier around the vehicle, which causes the shaped-charge warhead to explode at a relatively safe distance. For protecting the Arjun Mk2 against tandem-charge RPGsand guided anti-tank missiles, the CVRDE and IMI have co-developed a lightweight non-energetic reactive armour (NERA) package, comprising tiles in which two metal plates sandwich an inert liner, such as rubber. When struck by a shaped-charge’s metal jet, some of the impact energy is dissipated into the inert liner layer, and the resulting high-pressure causes a localised bending or bulging of the plates in the area of the impact. As the plates bulge, the point of jet impact shifts with the plate-bulging, increasing the effective thickness of the armour.

For ensuring fool-proof protection against new-generation anti-armour guided-missiles, the Arjun Mk2 will incorporate both multi-threat warning sensors and an active protection system (APS). The former, supplied by Elbit Systems, comprises four E-LWS sensors that can detect, categorise and pinpoint laser sources, including rangefinders, designators, beam-riders, and infra-red illuminators. E-LWS also enables direction indication for all threats, as well as audio and visual warnings. It is immune to reflection, gunfire, lightning, fire and self-electro-optical operations. The Iron Fist APS, being supplied by IMI, uses two fixed radar sensors to detect potential threats and measures distance and trajectory for providing the APS’ fire-control system (FCS) with data for calculation of engagement plans. The FCS uses two ELTA Systems-built conformal, distributed radars and an infra-red sensor called Tandir, developed by Elbit Systems. When a threat is identified as imminent, an explosive projectile interceptor is launched toward it from either of the two twin-tube rotating launchers housing fin-stabilised launch cannisters. The interceptor, shaped similar to a small mortar bomb, is designed to defeat the threat even when flying in very close proximity. Iron Fist can handle multiple targets simultaneously with different intercept methods, including multiple countermeasures fired at two simultaneous threats at the same sector. Unlike other systems, the Iron Fist uses only the blast effect to defeat the threat, crushing the soft components of a shaped-charge or deflecting and destabilising the guided-missile or kinetic rod in their flight. The interceptor is made of combustible materila, and is fully consumed in the explosion. Without the risk of shrapnel, the Iron Fist APS thus provides an effective, close-in protection for MBTs operating in dense, urban environment. Finally, a mobile camouflage system has been developed and integrated into the Arjun Mk2 in collaboration with Sweden’s Barracuda Camouflage Ltd to reduce the vehicle’s signature against all known sensors and smart munitions.

For enhancing structural survivability and firing accuracy, the Arjun Mk2 will do away with the existing electro-hydraulic turret control system (which is susceptible to impact damage and can cause a fire hazard) and will instead use a totally electronic modular electric gun and turret drive stabilisation (EGTDS) system supplied by Elbit Systems. The EGTDS uses azimuth/elevation motor drives with extremely rapid response time, low-voltage power, stabilised modes of operation, and manual back-up drives in both elevation and traverse. A motor drive-control unit transforms the power supply into two 3-phase systems. These supply and control the servo motors for alignment, stabilisation and slave mode of the turret/weapon according to the input signals of the sensors, control handles and active sight. The system assures increased safety since it eliminates the need for the hazardous, highly flammable hydraulic fluids. In addition, it offers smooth tracking at all speeds for very heavy turrets and guns and at extreme turret gun positions, while low power consumption leads to low infra-red signature as well as low-noise levels.

The Arjun Mk2 will also incorporate a brand-new Elbit-designed Commander’s panoramic sight (CAPS)--a dual axis stabilised line-of-sight, remote-operated, periscopic system for independent target acquisition, battlefield surveillance and main gun firing in a ‘hunter-killer’ auto-track mode. The CAPS will use a SAGEM-built Matis-STD thermal imager that operates in the 3-5 micron bandwidth, while the gunner’s sight will employ a THALES-built Catherine-FC thermal imager (operating in the 8-12 micron bandwidth. The Arjun Mk2’s turret will also housed an integrated battle management system (BMS) designed by Elbit Systems (and licence-built by Bharat Electronics Ltd), which provides rapid communications networking between the tactical tank commander and his subordinate units. It will enable the tank commander to plan missions, navigate, and continuously update situational awareness. The system will also record data for operational debriefing by using a digital data recorder, which will record and restore sight images and observation data collected during missions. This data can be shared with other elements, using the same network with the BMS, to report enemy targets. Such a concept is rapidly becoming an essential part of the digitised land forces integrated battlefield concept, combining MBTs, anti-armour teams, and attack helicopters in combined arms operations.

The Arjun Mk2’s loader will be able to load the 120mm rifled-bore main gun from a fully automated, fire-proof magazine, which will accommodate up to 10 ready rounds and deliver up to four types of ammunition types to the loader. In addition to APFSDS and HESH rounds, the Arjun Mk2 will make use of IMI-built APAM munitions designed to neutralise—especially in urban built-up terrain--tank-killer squads lurking with lethal anti-tank weapons. The APAM uses the proven concept of anti-personnel munitions based on controlled fragmentation. It deploys sub-munition shrapnel at defined intervals, covering a wide lethal area against soft targets. Each fragment is shaped to have enough kinetic energy to penetrate conventional body armour, or other materials. Also going on board the Arjun Mk2 is the laser-guided LAHAT anti-armour/anti-helicopter round, whose Israel Aerospace Industries-built target designator will be integrated with the MBT’s fire-control system. The tandem warhead-equipped LAHAT has a range of 8km when launched from a ground platform, and up to 13km, when deployed from high elevation. The missile has a 0.7 metre CEP when hitting its target at an angle of 30 degrees. Using the semi-active laser homing guidance method, LAHAT can be designated by the MBT’s gunner or through external designation from ground, mobile, or airborne observers. Firing the round requires minimal exposure in the firing position, and can be directed through the CAPS by only maintaining line--of-sight during missile flight. The missile’s trajectory can be preselected for either top attack (against MBT) or direct attack (against helicopter) engagement.

For improving crew comfort, the Arjun Mk2 will incorporate an Elbit Systems-supplied individual crew and equipment cooling system (ICECS), while will provide cooled and dried air from a special air conditioner to air-cooled overalls or vests. The air will naturally cool the upper torso of each crewman. Also being acquired from Elbit through a transfer-of-technology agreement for the MBT crew are regular/fire-resistant air-cooled overalls, NBC protected air-cooled overalls, and air-cooled compact vests. As for tank tracks, the Arjun Mk2 will, just like the Mk1, make use of Germany-based Diehl Remscheid’s DST 570V tracks, whose basic components, like the track links, sprocket wheels, guide wheels, running rollers, support rollers, running pads, traction aids, connectors, bolts, mono block-body with integral centre guide, rubberised track pads, and grouser, are all being licence-built by Larsen & Toubro.

Canada-based CAE’s Bengaluru-based CAE India Pvt Ltd subsidiary is presently designing a comprehensive suite of Arjun Mk2 MBT training systems to enhance its combat effectiveness by offering systematic training in a real-time environment through advanced simulation techniques. Earlier, in 2009 CAE India Pvt Ltd had delivered the initial suite of Arjun Mk1 training systems to efficiently and cost-effectively train the driver, gunner and commander. CAE’s suite of Arjun Mk1 training systems currently offers standalone training for the driver and gunner; turret-level training for the gunner and commander; integrated MBT-level training for the gunner, commander and driver; and troop-level training by networking Arjun Mk1 simulators to rehearse troop tactics, movement and joint operations. The Arjun Mk1’s driver trainer provides ab-initio driving and procedural training to individual drivers. Mounted on a six degree-of-freedom (DoF) motion platform, the driver trainer emulates the MBT’s interior cabin with all driver station controls. CAE is also developing a desktop-based Arjun classroom trainer for procedural and familiarisation training. CAE has also developed a comprehensive suite of Arjun Mk1 gunnery training devices to train personnel as they develop gunnery skills and rehearse for target identification, tracking, lasing, and firing drills. CAE’s suite of gunnery trainers includes two separate types and levels of training devices. The desktop gunnery procedures trainer, also called the Agastya simulator, supports initial training in handling the gunner station and firing procedures. The trainee uses MBT-specific controls just like in the actual MBT for familiarisation and procedural training. The turret simulator replicates the interior of the gunner’ and commander’ stations of the MBT. Mounted on a six-DoF motion platform, the turret simulator features a 220-degree by 40-degree open-hatch visual display to provide trainees with the high-fidelity visual cues required for gunnery training.
 
. . .
Calm down guys.Al khalid is already inducted in to PA.Arjun MK2 still in developmental phase because IA propose a higher
offset requirment.Fact is that there is some problem in IA tank acquisition. All this problem is arise when Arjun MK1 development delayed.IA traditionally use Russian tanks specially T55,T72 etc.So when Arjun tanks development started .IA decided not to acquire new tanks .Only upgraded present ones.So they upgrade T72.But delaying of Arjun prompt them to buy T 90.
Now Arjun MK1 COMPLETED..So they hunt for new generation FMBT.A few years ago IA told their concept in International program.But at that time they realise there is no such system in the world because Russians came in front for production JV with India such a tank.
Now new news is this FMBT is more upgraded version of Arjun MK2.So they pressure DRDO for that.But after T90 they will no purchase a foreign system .That when T72 starting to retired .They will surely opt for ArjunMK2 or higher version .So by keeping pressure on DRDO they can acquired much advanced system in 2020 may better than present version.That is the IA plan.Unfortunately some morons take it a problem of DRDO and ISRO.
 
.
So after years and years and billions if rupees and Indian scientists are only able to make 45% of the tank. Maybe they need more time.
And we are also not in a hurry. Lagay raho.
:sleep:
 
.
Many of you are getting mixed up or spouting utter nonsense. Fair enough the Indian media has once again put out a BS piece. There is a huge difference between the percentage of foreign origin components and the total value of foreign content per unit. The latter figure will be quite high as it is the top end stuff that is being procured and this doesn't come cheap. However the percentage of foreign content on the Arjun is NOWHERE near as high as 70%+ more like 45-50%. As time goes by the indigenous content will naturally increase. When the IA places larger orders both the unit cost and the imported content will decrease considerably.


On topic. The Israelis know what they're doing. They'll address these issues swiftly and professionally.
 
.
The armor doesn't seem high quality. Also with that heaviness it is very inflexible on battlefield. For example Turkish altay goes 80 kmp. Nowaday wars are blitzkrieg/lightening war. If you are slow as .... You won't know what hit you because your opponent will outmaneuver you.
 
.
The armor doesn't seem high quality. Also with that heaviness it is very inflexible on battlefield. For example Turkish altay goes 80 kmp. Nowaday wars are blitzkrieg/lightening war. If you are slow as .... You won't know what hit you because your opponent will outmaneuver you.

Arjun is faster than M1A2 Abrams.
 
.
Back
Top Bottom