http://www.riazhaq.com/2018/06/pakistan-water-crisis-facts-and-myths.html
Pakistan is believed to be in the midst of a water crisis that is said to pose an existential threat to the country. These assertions raise a whole series of questions on the source of the crisis and possible solutions to deal with it. The New Water Policy adopted in April 2018 is a good start but it needs a lot more focus and continuing investments.
Questions on Water Crisis:
How severe is Pakistan's water crisis? Is India contributing to this crisis? How many million acre feet (MAF) of water flows in Pakistan? What are its sources? Glaciers? Rain? Groundwater? How much of it is stored in dams and other reservoirs? What is the trend of per capita water availability in Pakistan? What sectors are the biggest consumers of water in Pakistan? Why does agriculture consume over 95% of all available water? How can Pakistan produce "more crop per drop"? What are Pakistan's options in dealing with the water crisis? Build more dams? Recharge groundwater? Use improved irrigation techniques like sprinklers and drip irrigation? Would metering water at the consumers and charging based on actual use create incentives to be more efficient in water use?
Water Availability:
Pakistan receives an average of 145 million acre feet (MAF) of water a year, according to the Indus River System Authority (IRSA) report. Water availability at various canal headworks is about 95 million acre feet (MAF). About 50%-90% comes from the glacial melt while the rest comes from monsoon rains. Additional 50 MAF of groundwater is extracted annually via tube wells.
Pakistan Water Availability. Source: Water Conference Presentation
The total per capita water availability is about 900 cubic meters per person, putting Pakistan in the water-stressed category.
India Factor:
What is the impact of India's actions on water flow in Pakistan? Under the Indus Basin Water Treaty, India has the exclusive use of the water from two eastern rivers: Ravi and Sutlej. Pakistan has the right to use all of the water from the three western rivers: Chenab, Jhelum and Indus. However, India can build run of the river hydroelectric power plants with minimal water storage to generate electricity.
Currently, India is not using all of the water from the two eastern rivers. About 4.6 million acre feet (MAF) of water flows into Pakistan via Ravi and Sutlej. Water flow in Pakistan will be reduced if India decides to divert more water from Ravi and Sutlej for its own use.
Secondly, India can store water needed for run-of-the-river hydroelectric plants on the western rivers. When new hydroelectric projects are built on these rivers in India, Pakistan suffers from reduced water flows during the periods when these reservoirs are filled by India. This happened when Baglihar dam was filled by India as reported by Harvard Professor John Briscoe who was assigned by the World Bank to work on IWT compliance by both India and Pakistan.
Pakistan is also likely to suffer when India ensures its hydroelectric reservoirs are filled in periods of low water flow in the three western rivers.
Water Storage Capacity:
Pakistan's water storage capacity in its various dams and lakes is about 15 million acre feet (MAF), about 10% of all water flow. It's just enough water to cover a little over a month of water needed. There are several new dams in the works which will double Pakistan's water storage capacity when completed in the future.
The only significant expansion in water storage capacity occurred on former President Musharraf's watch when Mangla Dam was raised 30 feet to increase its capacity by nearly 3 million acre feet (MAF). Musharraf increased water projects budget to Rs. 70 billion which was reduced to Rs. 51 billion by PPP government and further decreased to Rs. 36 billion by PMLN government. It was only the very last PMLN budget passed by Shahid Khaqan Abbasi's outgoing government that increased water development allocation to Rs. 65 billion, a far cry from Rs. 70 billion during Musharraf years given the dramatic drop in the value of the Pakistani rupee.
Water Consumption:
Domestic, business and industrial consumers use about 5 million acre feet while the rest is consumed by the agriculture sector to grow food. Just 5% improvement in irrigation efficiency can save Pakistan about 7.5 million acre feet , the same as the current storage capacity of the country's largest Tarbela dam.
Given the vast amount of water used to grow crops, there is a significant opportunity to save water and increase yields by modernizing the farm sector.
National Water Policy:
Pakistan's Common Council of Interests (CCI) with the prime minister and the provincial chief ministers recently adopted a National Water Policy (NWP) in April 2018. It is designed to deal with “the looming shortage of water” which poses “a grave threat to (the country’s) food, energy and water security” and constitutes “an existential threat…”as well as “the commitment and intent” of the federal and provincial governments to make efforts “ to avert the water crisis”.
The NWP supports significant increases in the public sector investment for the water sector by the Federal Government from 3.7% of the development budget in 2017-18 to at least 10% in 2018-19 and 20% by 2030; the establishment of an apex body to approve legislation, policies and strategies for water resource development and management, supported by a multi- sectoral Steering Committee of officials at the working level; and the creation of a Groundwater Authority in Islamabad and provincial water authorities in each of the provinces.
More Crop Per Drop:
"More crop per drop" program will focus on improving water use efficiency by promoting drip and sprinkler irrigation in agriculture.
The Punjab government started this effort with the World Bank with $250 million investment. The World Bank is now providing additional $130 million financing for the Punjab Irrigated Agriculture Productivity Improvement Program Phase-I.
The project is the Punjab Government's initiative called High-Efficiency Irrigation Systems (HEIS) to more than doubles the efficiency of water use. Under the project, drip irrigation systems have been installed on about 26,000 acres, and 5,000 laser leveling units have been provided. The additional financing will ensure completion of 120,000 acres with ponds in saline areas and for rainwater harvesting, and filtration systems for drinking water where possible, according to the World Bank.
Groundwater Depletion:
Pakistan, India, and the United States are responsible for two-thirds of the groundwater use globally, according to a report by University College London researcher Carole Dalin. Nearly half of this groundwater is used to grow wheat and rice crops for domestic consumption and exports. This puts Pakistan among the world's largest exporters of its rapidly depleting groundwater.
Pakistan Council of Research in Water Resources is working with United States' National Air and Space Administration (NASA) to monitor groundwater resources in the country.
Water Stress Satellite Map Source: NASA
NASA's water stress maps shows extreme water stress across most of Pakistan and northern, western and southern parts of India.
The US space agency uses Gravity Recovery and Climate Experiment (GRACE) to measure earth's groundwater. GRACE’s pair of identical satellites, launched in 2002, map tiny variations in Earth's gravity. Since water has mass, it affects these measurements. Therefore, GRACE data can help scientists monitor where the water is and how it changes over time, according to NASA.
Aquifer Recharge:
Building large dams is only part of the solution to water stress in Pakistan. The other, more important part, is building structures to trap rain water for recharging aquifers across the country.
Typical Aquifer in Thar Desert
Pakistan's highly water stressed Punjab province is beginning recognize the need for replacing groundwater. Punjab Government is currently in the process of planning a project to recharge aquifers for groundwater management in the Province by developing the economical and sustainable technology and to recharge aquifer naturally and artificially at the available site across the Punjab. It has allocated Rs. 582.249 million to execute this project over four years.
Summary:
Pakistan is in the midst of a severe water crisis that could pose an existential threat if nothing is done to deal with it. The total per capita water availability is about 900 cubic meters per person, putting the country in the water-stressed category. Agriculture sector uses about 95% of the available water. There are significant opportunities to achieve greater efficiency by using drop irrigation systems being introduced in Punjab. The New Water Policy is a good start but it requires continued attention with greater investments and focus to deal with all aspects of the crisis.
Related Links:
Haq's Musings
Groundwater Depletion in Pakistan
Water Scarce Pakistan
Cycles of Drought and Floods in Pakistan
Pakistan to Build Massive Dams
Dust Bowl in Thar Desert Region
Dasht River in Balochistan
Hindus in Pakistan
http://www.riazhaq.com/2018/06/pakistan-water-crisis-facts-and-myths.html
Pakistan is believed to be in the midst of a water crisis that is said to pose an existential threat to the country. These assertions raise a whole series of questions on the source of the crisis and possible solutions to deal with it. The New Water Policy adopted in April 2018 is a good start but it needs a lot more focus and continuing investments.
Questions on Water Crisis:
How severe is Pakistan's water crisis? Is India contributing to this crisis? How many million acre feet (MAF) of water flows in Pakistan? What are its sources? Glaciers? Rain? Groundwater? How much of it is stored in dams and other reservoirs? What is the trend of per capita water availability in Pakistan? What sectors are the biggest consumers of water in Pakistan? Why does agriculture consume over 95% of all available water? How can Pakistan produce "more crop per drop"? What are Pakistan's options in dealing with the water crisis? Build more dams? Recharge groundwater? Use improved irrigation techniques like sprinklers and drip irrigation? Would metering water at the consumers and charging based on actual use create incentives to be more efficient in water use?
Water Availability:
Pakistan receives an average of 145 million acre feet (MAF) of water a year, according to the Indus River System Authority (IRSA) report. Water availability at various canal headworks is about 95 million acre feet (MAF). About 50%-90% comes from the glacial melt while the rest comes from monsoon rains. Additional 50 MAF of groundwater is extracted annually via tube wells.
Pakistan Water Availability. Source: Water Conference Presentation
The total per capita water availability is about 900 cubic meters per person, putting Pakistan in the water-stressed category.
India Factor:
What is the impact of India's actions on water flow in Pakistan? Under the Indus Basin Water Treaty, India has the exclusive use of the water from two eastern rivers: Ravi and Sutlej. Pakistan has the right to use all of the water from the three western rivers: Chenab, Jhelum and Indus. However, India can build run of the river hydroelectric power plants with minimal water storage to generate electricity.
Currently, India is not using all of the water from the two eastern rivers. About 4.6 million acre feet (MAF) of water flows into Pakistan via Ravi and Sutlej. Water flow in Pakistan will be reduced if India decides to divert more water from Ravi and Sutlej for its own use.
Secondly, India can store water needed for run-of-the-river hydroelectric plants on the western rivers. When new hydroelectric projects are built on these rivers in India, Pakistan suffers from reduced water flows during the periods when these reservoirs are filled by India. This happened when Baglihar dam was filled by India as reported by Harvard Professor John Briscoe who was assigned by the World Bank to work on IWT compliance by both India and Pakistan.
Pakistan is also likely to suffer when India ensures its hydroelectric reservoirs are filled in periods of low water flow in the three western rivers.
Water Storage Capacity:
Pakistan's water storage capacity in its various dams and lakes is about 15 million acre feet (MAF), about 10% of all water flow. It's just enough water to cover a little over a month of water needed. There are several new dams in the works which will double Pakistan's water storage capacity when completed in the future.
The only significant expansion in water storage capacity occurred on former President Musharraf's watch when Mangla Dam was raised 30 feet to increase its capacity by nearly 3 million acre feet (MAF). Musharraf increased water projects budget to Rs. 70 billion which was reduced to Rs. 51 billion by PPP government and further decreased to Rs. 36 billion by PMLN government. It was only the very last PMLN budget passed by Shahid Khaqan Abbasi's outgoing government that increased water development allocation to Rs. 65 billion, a far cry from Rs. 70 billion during Musharraf years given the dramatic drop in the value of the Pakistani rupee.
Water Consumption:
Domestic, business and industrial consumers use about 5 million acre feet while the rest is consumed by the agriculture sector to grow food. Just 5% improvement in irrigation efficiency can save Pakistan about 7.5 million acre feet , the same as the current storage capacity of the country's largest Tarbela dam.
Given the vast amount of water used to grow crops, there is a significant opportunity to save water and increase yields by modernizing the farm sector.
National Water Policy:
Pakistan's Common Council of Interests (CCI) with the prime minister and the provincial chief ministers recently adopted a National Water Policy (NWP) in April 2018. It is designed to deal with “the looming shortage of water” which poses “a grave threat to (the country’s) food, energy and water security” and constitutes “an existential threat…”as well as “the commitment and intent” of the federal and provincial governments to make efforts “ to avert the water crisis”.
The NWP supports significant increases in the public sector investment for the water sector by the Federal Government from 3.7% of the development budget in 2017-18 to at least 10% in 2018-19 and 20% by 2030; the establishment of an apex body to approve legislation, policies and strategies for water resource development and management, supported by a multi- sectoral Steering Committee of officials at the working level; and the creation of a Groundwater Authority in Islamabad and provincial water authorities in each of the provinces.
More Crop Per Drop:
"More crop per drop" program will focus on improving water use efficiency by promoting drip and sprinkler irrigation in agriculture.
The Punjab government started this effort with the World Bank with $250 million investment. The World Bank is now providing additional $130 million financing for the Punjab Irrigated Agriculture Productivity Improvement Program Phase-I.
The project is the Punjab Government's initiative called High-Efficiency Irrigation Systems (HEIS) to more than doubles the efficiency of water use. Under the project, drip irrigation systems have been installed on about 26,000 acres, and 5,000 laser leveling units have been provided. The additional financing will ensure completion of 120,000 acres with ponds in saline areas and for rainwater harvesting, and filtration systems for drinking water where possible, according to the World Bank.
Groundwater Depletion:
Pakistan, India, and the United States are responsible for two-thirds of the groundwater use globally, according to a report by University College London researcher Carole Dalin. Nearly half of this groundwater is used to grow wheat and rice crops for domestic consumption and exports. This puts Pakistan among the world's largest exporters of its rapidly depleting groundwater.
Pakistan Council of Research in Water Resources is working with United States' National Air and Space Administration (NASA) to monitor groundwater resources in the country.
Water Stress Satellite Map Source: NASA
NASA's water stress maps shows extreme water stress across most of Pakistan and northern, western and southern parts of India.
The US space agency uses Gravity Recovery and Climate Experiment (GRACE) to measure earth's groundwater. GRACE’s pair of identical satellites, launched in 2002, map tiny variations in Earth's gravity. Since water has mass, it affects these measurements. Therefore, GRACE data can help scientists monitor where the water is and how it changes over time, according to NASA.
Aquifer Recharge:
Building large dams is only part of the solution to water stress in Pakistan. The other, more important part, is building structures to trap rain water for recharging aquifers across the country.
Typical Aquifer in Thar Desert
Pakistan's highly water stressed Punjab province is beginning recognize the need for replacing groundwater. Punjab Government is currently in the process of planning a project to recharge aquifers for groundwater management in the Province by developing the economical and sustainable technology and to recharge aquifer naturally and artificially at the available site across the Punjab. It has allocated Rs. 582.249 million to execute this project over four years.
Summary:
Pakistan is in the midst of a severe water crisis that could pose an existential threat if nothing is done to deal with it. The total per capita water availability is about 900 cubic meters per person, putting the country in the water-stressed category. Agriculture sector uses about 95% of the available water. There are significant opportunities to achieve greater efficiency by using drop irrigation systems being introduced in Punjab. The New Water Policy is a good start but it requires continued attention with greater investments and focus to deal with all aspects of the crisis.
Related Links:
Haq's Musings
Groundwater Depletion in Pakistan
Water Scarce Pakistan
Cycles of Drought and Floods in Pakistan
Pakistan to Build Massive Dams
Dust Bowl in Thar Desert Region
Dasht River in Balochistan
Hindus in Pakistan
http://www.riazhaq.com/2018/06/pakistan-water-crisis-facts-and-myths.html