Nuclear Power in Saudi Arabia
(Updated October 2017)
- Saudi Arabia plans to construct 16 nuclear power reactors over the next 20-25 years at a cost of more than $80 billion.
- It projects 17 GWe of nuclear capacity by 2040 to provide 15% of the power then, along with over 40 GWe of solar capacity.
- There are also plans for small reactors for deslination.
In December 2006 the six member states of the Gulf Cooperation Council (GCC) – Kuwait, Saudi Arabia, Bahrain, the United Arab Emirates (UAE), Qatar and Oman – announced that the Council was commissioning a study on the peaceful use of nuclear energy. France agreed to work with them on this, and Iran pledged assistance with nuclear technology.
Together they produce 636 TWh per year (2015), almost all from oil and gas and with significant annual demand growth. They have total installed capacity of over 90 GWe, with a common grid apart from Saudi Arabia, though with negligible import and export. There is also a large demand for desalination, currently fuelled by oil and gas.
In February 2007 the six states agreed with the IAEA to cooperate on a feasibility study for a regional nuclear power and desalination programme, with Saudi Arabia leading the investigation.
Saudi electricity
Saudi Arabia’s population has grown from 4 million in 1960 to over 31 million in 2016. It is the main electricity producer and consumer in the Gulf States, with 338 TWh gross production in 2015, 150 TWh from oil and 189 TWh from gas. It consumes over one-quarter of its oil production, and while energy demand is projected to increase substantially, oil production is not, and by 2030 a large proportion will be consumed domestically, much of it for electricity generation. Its per capita consumption is about 9000 kWh/yr, heavily subsidised.
Generating capacity is over 30 GWe. Demand is growing by 8-10% per year and peak demand is expected to be 70 GWe by 2020 and 120 GWe by 2032, driven partly by desalination increase. However, in October 2015 the King Abdullah City for Atomic and Renewable Energy (KA-CARE) said: “The annual increase in domestic demand for energy ranges now between 6% and 8%. Forecasts indicate that the Kingdom will have to increase its generated power by 80 GWe by 2040." Saudi Arabia is unique in the region in having 60 Hz grid frequency, which severely limits the potential for grid interconnections – it has no electricity import or export.
The Ministry of Water & Electricity (MOWE) is broadly responsible for power and desalination in the country.
It had plans to install 24 GWe of renewable electricity capacity by 2020, and 50 GWe by 2032 or 2040, and was looking at the prospects of exporting up to 10 GWe of this to Italy or Spain during winter when much generating capacity is under-utilised (cooling accounts for over half the capacity in summer). The 50 GWe in 2032 (later: 2040) was to comprise 25 GWe CSP, 16 GWe solar PV, 4 GWe geothermal and waste (together supplying 150-190 TWh, 23-30% of power), complementing 18 GWe nuclear (supplying 131 TWh/yr, 20% of power), and supplemented by 60.5 GWe hydrocarbon capacity which would be little used (c10 GWe) for half the year. The nuclear target date has now been put back to 2040. In 2016 renewables targets were scaled back from 50% to 10% of electricity (by 2040?) as plans shifted more to gas, so that it would increase its share from 50% to 70%.
In July 2017 the cabinet approved the establishment of the 'National Project for Atomic Energy', and new financial and administrative regulations for KA-CARE.
Saudi desalination
The Saline Water Conversion Corporation (SWCC) increased its desalinated water output in 2014 by 10%, to more than 1.1 billion cubic metres. The country continues to install huge desalination capacity, much of it thermal MSF and MED, but a lot is reverse osmosis (RO), driven by electricity.
It is expanding its Yanbu desalination plant to supply the Medina region. Phase 1 is a 146,000 m3/d hybrid plant, mostly MSF using heat recovered from a gas turbine power plant, but with two RO units. Phase 2 upgrades this and adds a 68,000 m3/day MED plant from Doosan using the heat from an associated 690 MWe power plant, all costing over $1 billion. It will be the world's largest MED plant. Doosan will also build Yanbu 3, a 550,000 m3/day MSF plant due for completion in 2016. A 600,000 m3/d RO plant is planned at Rabigh in the west.
The world’s largest thermal desalination plant is Saudi Arabia’s 1,025,000 m3/d Ras Al Khair (Ras Azzour) MSF project northwest of Jubail, costing SAR 27 billion ($7.2 billion) and built by Doosan. The project includes a 2.6 GWe power plant. The hybrid desalination facility has a capacity of 727,000 m3/d multi-stage flash (MSF) evaporation and 307,000 m3/d RO membrane filtration. It will supply water from the Gulf to 3.5 million people in the Riyadh area. The 880,000 m³/d Shoaiba 3 plant was formerly the largest. Veolia has a $402 million contract to build a 178,600 m3/d ultrafiltration and RO plant for Marafiq at the $19.3 billion Sadara petrochemical complex, to come on line in mid-2015. The water will be for two cooling towers and as boiler feedwater.
The first of three phases of the King Abdullah Solar water initiative were expected to be operating by the end of 2013. Phase 1 involves construction of two solar plants which will generate 10 MW of power for a 30,000 m3/d reverse-osmosis (RO) desalination plant at Al Khafji, near the Kuwait border. Phase 2 will involve construction of a 300,000 m3/d desalination plant over three years. The third phase aims to implement the solar water initiative throughout Saudi Arabia, with the eventual target of seeing all the country's desalination plants powered by solar energy by 2020. One of the main objectives of this initiative under King Abdullah City for Science & Technology (KACST) is to desalinate seawater at a cost of less than Riyal 1.5/m3 (US$ 0.40/m³) compared with the current cost of thermal desalination, which KACST says is in the range Riyal 2.0-5.5/m³ (US$ 0.53-1.47/m³), and desalination by RO, which is Riyal 2.5-5.5/m3 (US$ 0.67-1.47/m3) for a desalination plant producing 30,000 m3/d.
Saudi Arabia's General Establishment for Water Desalination (GEWD) is, over the four years to 2019, implementing new projects with a total production capacity of up to 2.5 million m3/d in the Makkah region and the eastern province.
Saudi nuclear power plans: large units
In August 2009 the Saudi government announced that it was considering a nuclear power program on its own, and in April 2010 a royal decree said: "The development of atomic energy is essential to meet the Kingdom's growing requirements for energy to generate electricity, produce desalinated water and reduce reliance on depleting hydrocarbon resources." The King Abdullah City for Atomic and Renewable Energy (KA-CARE) was set up in Riyadh to advance this agenda as an alternative to oil and to be the competent agency for treaties on nuclear energy signed by the kingdom. It is also responsible for supervising works related to nuclear energy and radioactive waste projects.
In June 2010 it appointed the Finland- and Swiss-based Poyry consultancy firm to help define "high-level strategy in the area of nuclear and renewable energy applications" with desalination. In November 2011 it appointed WorleyParsons to conduct site surveys and regional analysis to identify potential sites, to select candidate sites then compare and rank them, and to develop technical specifications for a planned tender for the next stage of the Saudi nuclear power project. Three sites were short-listed as of September 2013: Jubail on the Gulf; and Tabuk and Jizan on the Red Sea. The Nuclear Holding Company was being set up in 2013.
In June 2011 the coordinator of scientific collaboration at KA-CARE said that it plans to construct 16 nuclear power reactors over the next 20 years at a cost of more than 300 billion riyals ($80 billion). These would generate about 20% of Saudi Arabia's electricity. Smaller reactors such as Argentina’s CAREM are envisaged for desalination. An April 2013 timeline showed nuclear construction starting in 2016.
In April 2013 KA-CARE projected 17 GWe of nuclear capacity by 2032 of total 123 GWe, with 16 GWe solar PV, 25 GWe solar CSP (to provide for heat storage), and 4 GWe from geothermal, wind and waste. About half the capacity in 2032 would still be hydrocarbon, with one-third solar following investment in that of some $108 billion. In addition 9 GWe of wind capacity would be used for desalination. In January 2015 the nuclear target date was moved to 2040.
In September 2013 both GE Hitachi Nuclear Energy and Toshiba/ Westinghouse signed contracts with Exelon Nuclear Partners (ENP), a division of Exelon Generation, to pursue reactor construction deals with KA-CARE. GEH is proposing its ABWR and ESBWR, while Toshiba/ Westinghouse is proposing the AP1000 and its ABWR version. Areva and EdF have signed a number of agreements with Saudi companies and universities, and EdF signed an agreement with Saudi Arabia's Global Energy Holding Company (GEHC) for the creation of a joint venture whose first task will be to carry out feasibility studies for an EPR reactor in the country.
In January 2015 the government said that its target for 17 GWe of nuclear capacity would be more like 2040.
INVAP (Investigacion Aplicada) from Argentina and state-owned Saudi technology innovation company
Taqnia set up a joint venture company, Invania, to develop nuclear technology for Saudi Arabia's nuclear power program, apparently focusing on small reactors such as CAREM (100 MWt, 27 MWe) for desalination. Taqnia is the technology arm of the Public Investment Fund.
In January 2016 KA-CARE signed an agreement with China Nuclear Engineering Corporation (CNEC) to build a high-temperature reactor (HTR) in the country, based on the HTR-PM now under construction in China by CNEC. A further cooperation agreement to this end, including localization of the supply chain and undertaking a feasibility study, was signed in March 2017. In May 2017 a joint working group commenced a formal feasibility study for the project, with a view to submitting it to the government later in 2017. In August 2017 China Nuclear Engineering & Construction Group (CNEC) and Saudi Technology Development Corporation signed an agreement for a feasibility study on using high temperature reactors for seawater desalination. The IAEA also reports a feasibility study on HTRs providing heat for the petro-chemical industry in Saudi Arabia.
[paste:font size="5"]Uranium
In March and August 2017 China National Nuclear Corporation (CNNC) and the Saudi Geological Survey signed agreements on cooperation on the exploration of uranium. CNNC said it would explore nine potential areas for uranium resources in Saudi Arabia over the next two years.
Regulation & safety
The Saudi Arabian Atomic Regulatory Authority (SAARA) was set up to commence activities early in 2014. In May 2014 KA-CARE signed an agreement with the Finnish Radiation and Nuclear Safety Authority (STUK) to assist in this by recruiting and training personnel and establishing safety standards. In November 2016 KA-CARE signed an agreement with South Korea’s Nuclear Safety and Security Commission (NSSC) to promote cooperation in “regulating nuclear safety, safeguards and physical protection, radiation protection and relevant research, as well as development in a manner to serve atomic energy programs in the Kingdom of Saudi Arabia," according to KA-CARE. NSSC said that “the platform of cooperation” was “expected to play an imperative role in facilitating bilateral cooperations in the region."
International agreements
A nuclear cooperation agreement with France in early 2011 seemed likely to advance French interests in the country’s plans. In June 2015 France signed an agreement to undertake a feasibility study for building two EPR nuclear power reactors. Additional agreements were signed on nuclear safety training as well as on waste disposal.
A mid-2011 nuclear cooperation agreement with Argentina was evidently related to smaller plants for desalination and the subsequent Invania joint venture.
A November 2011 agreement with South Korea called for cooperation in nuclear R&D, including building nuclear power plants and research reactors, as well as training, safety and waste management. In June 2013 Kepco offered support for the localization of nuclear technology, along with joint research and development of nuclear technologies if Saudi Arabia purchases South Korean reactors. In September 2015 further contracts were signed, which aim at building a partnership to establish knowledge infrastructure in SMART technology fields (see March 2015 SMART agreement
above).
A January 2012 agreement with China relates to nuclear plant development and maintenance, research reactors, and the provision of fabricated nuclear fuel. A further agreement with CNNC was signed in August 2014, and in August 2016 KA-CARE signed an agreement with CNNC for human resource development.
A June 2015 agreement with Rosatom provided for cooperation in the field of nuclear energy, including: the design, construction, operation and decommissioning of nuclear power and research reactors, including desalination plants and particle accelerators; the provision of nuclear fuel cycle services, including nuclear power plants and research reactors; the management of used nuclear fuel and radioactive waste management; the production of radioisotopes and their application in industry, medicine and agriculture; and the education and training of specialists in the field of nuclear energy. A further programme of cooperation was signed in October 2017 between KA-CARE and Rosatom, focused on small and medium reactors, and on building a new research reactor.
In October 2015 KA-CARE signed a nuclear cooperation agreement with Hungary. In October 2016 it signed a nuclear cooperation agreement with Kazakhstan, focused on fuel supply.
In March 2017 an agreement between KA-CARE and Jordan Atomic Energy Commission (JAEC) was signed for a feasibility study on the construction of two small modular reactors (SMRs) in Jordan for the production of electricity and desalinated water. No particular technology was mentioned.
KA-CARE earlier said it was negotiating with Czech Republic, UK and the USA regarding "further cooperation". A full nuclear cooperation agreement with the USA is generally seen as vital to proceeding with Saudi nuclear power plans.
Saudi Arabia has had a safeguards agreement in force with the IAEA since 2009, but no Additional Protocol.
Notes & references
Muhammad Garwan, K.A.CARE, Nov 2013,
Sustainable Energy Mix for Saudi Arabia
KAERI 3/9/15,
KAERI and K.A.CARE signed SMART PPE Agreement
Saudi Arabia pushes ahead with nuclear, renewable power
Kingdom’s first large scale nuclear plant to be commissioned in 2027
Published: 18:59 January 15, 2018
Fareed Rahman, Senior Reporter
Abu Dhabi: Saudi Arabia is pushing ahead with its renewables and nuclear power projects to meet rapidly growing power demand, top government officials from the kingdom said in Abu Dhabi.
The country will build a nuclear plant comprising two reactors with a total capacity of 3.2 gigawatts, Abdul Malek Al M. Saberi, a senior official from King Abdullah City for Atomic and Renewable Energy (KACARE) told reporters on the sidelines of World Future Energy Summit in Abu Dhabi on Monday.
“We have received proposals from five countries including China, Russia, US, South Korea and France to build the nuclear power plant. We will announce the winner at the end of the year and will sign a joint venture in the early 2019 to build the plant,” Al Saberi said.
The kingdom is aiming to commission the nuclear plant by 2027, he said adding that Saudi Arabia will be the second country in the region to have a nuclear power plant after the UAE.
When asked about investment plans, he said financing will be discussed with the bidder and declined to give the figure.
The country is also building two small reactors, with a capacity of 120 megawatts each, which are expected to be commissioned by 2023. Nuclear energy will contribute about 5 per cent of the total energy mix once the nuclear reactors become operational.
“There is an annual electricity demand [growth] of more than 7 per cent in Saudi Arabia due to growing population and industries,” Al Saberi said.
“With nuclear energy we are going to rely less on hydrocarbons for electricity generation and the nuclear energy programme will also give a boost to industrial sector growth and diversification of the economy.”
Due to a plunge in global oil prices, Saudi Arabia — along with other countries — is focusing on diversifying its economy to generate extra revenue.
The country is planning to create thousands of new jobs and set up new industries as part of its vision 2030, launched by Saudi crown prince Mohammad Bin Salman.
Saudi Arabia is also looking at wind, as well as solar plants, to contribute to the country’s energy mix.
It is targeting 9.5 gigawatts of wind and solar energy by 2023.
“We will not stop and will go beyond that. We are optimistic to achieve the target. The government is supporting the programme in a big way,” said Asem Othman Alkadi from Renewable Energy Project Development Office in Saudi Arabia.
Geothermal and waste to energy are the other sources of energy which the Kingdom is targeting in future, he added.
Saudi Arabia, one of the largest exporters of oil in the world is planning to invest $30 to $50 billion in the coming years up to 2023 in renewable energy projects.
http://gulfnews.com/business/renewa...-ahead-with-nuclear-renewable-power-1.2157535
Some quick calculations;
1 Gigawatt equals around 500 utility-scale (average size of 2 MV) wind turbines!
Or 4.6 million PV panels (average panel size of 295 watts)!
Saudi Arabia plans 3.3GW of solar tenders in 2018
Turki Al Shehri, head of REPDO. Credit: Twitter - Saudi NREP
Saudi Arabia plans to tender seven solar projects with a combined capacity of 3.3GW during 2018, according to a statement from Turki Al Shehri, head of the country's Renewable Energy Project Development Office (REPDO), confirming news from
Bloomberg earlier this week.
This year, REPDO will also tender one 800MW wind project under the National Renewable Energy Program (NREP), bringing the year's renewable energy tendering total to more than 4GW.
Results of the 300MW Sakaka solar tender are due this month, with only
ACWA and a Marubeni-led consortium left in the running,
despite Masdar and EDF putting in the lowest ever solar bid.
https://www.pv-tech.org/news/saudi-arabia-plans-3.3gw-of-solar-tenders-in-2018
@waz can you change this thread to "
Renewable Energy in Saudi Arabia"?
Thanks in a advance.