What's new

India’s Energy Crisis

JaiMin

FULL MEMBER
Joined
Mar 23, 2015
Messages
193
Reaction score
1
Country
Viet Nam
Location
Kuwait
Can India modernize its manufacturing economy and supply electricity to its growing population without relying heavily on coal—and quite possibly destroying the global climate?

An old man wakes on the floor of a hut in a village in southern India. He is wrapped in a thin cotton blanket. Beside him, music wails softly on a transistor radio. A small wood fire smolders on the floor, filling the space with a light haze; above it,the bamboo timbers of the hut’s roof are charred to a glossy black.

The man’s name is Mallaiah Tokala, and he is the headman of Appapur village, in the Amrabad Tiger Reserve in Telangana state. On his forehead he wears the vibhuti, the sacred daub of white ash. He is uncertain of his exact age, but he is well into his 10th decade. He has lived in this village his whole life, a period that encompasses the tumultuous 20th-century history of India: the rise of Gandhi, the Salt March, the end of the Raj and the coming of independence, Partition and the bloodshed that followed, the assassination of Rajiv Gandhi and the dawning of a new era of sectarian violence and terrorism. And now he has lived long enough to witness the coming of electricity to Appapur, in the form of solar-powered lights and TVs and radios.


On the wall of the hut a single LED lightbulb glows softly, connected through the roof to a black cable that stretches to a 100-watt solar panel on the roof of a concrete house nearby. It is a direct outcome of the policies of the central government, a thousand miles to the north in Delhi. Appapur is a “solar village,” one of the showcases for the government’s drive to bring solar power to small, unelectrified villages across India.
India_2x1128.jpg

CAIT Climate Data Explorer, maintained by the World Resources Institute). China is now the world’s largest emitter of carbon. India’s per capita emissions as of 2012, the last year for which figures are available, were 1.68 tons per year, and its 2014 GDP was $1,631 per person. Its population is expected to grow by another 400 million people over the next three decades, bringing it to 1.7 billion by 2050. If India follows a path similar to China’s, that will add another eight billion tons of carbon to the atmosphere each year—more than total U.S. emissions in 2013. (For a look at how improved health care and medical technologies are affecting population growth worldwide, see our infographic “More Life, Less Death.”)

Such growth would easily swamp efforts elsewhere in the world to curtail carbon emissions, dooming any chance to head off the dire effects of global climate change. (Overall, the world will need to reduce its current annual emissions of 40 billion tons by 40 to 70 percent between now and 2050.) By 2050, India will have roughly 20 percent of the world’s population. If those people rely heavily on fossil fuels such as coal to expand the economy and raise their living standards to the level people in the rich world have enjoyed for the last 50 years, the result will be a climate catastrophe regardless of anything the United States or even China does to decrease its emissions. Reversing these trends will require radical transformations in two main areas: how India produces electricity, and how it distributes it.

Coal conundrum

The man charged with solving this puzzle is Piyush Goyal, the minister of power. (His full title is Minister of State with Independent Charge for Power, Coal and New & Renewable Energy.) With his political inheritance (his father, Ved Prakash Goyal, was a member of parliament and the minister of shipping under the government of Prime Minister Atal Bihari Vajpayee in the early 2000s), his suave manner, and his investment banking background, Goyal, 51, represents a new generation of Indian politicians from theBharatiya Janata Party (BJP) who have come to power during the decline of the once-dominant Congress Party. Despite the BJP’s origins in the Hindu nationalist party that emerged in opposition to the more secular Congress Party, these younger politicians tend to be pragmatists, seeking to encourage economic growth through neoliberal policies such as deregulation and privatization of state industries. Since his appointment, Goyal has emerged as a champion of renewable energy, calling for investments of $100 billion in renewables and another $50 billion in upgrading the country’s faltering grid. Almost every week he appears in the newspapers cutting the ribbon on a new solar power plant or wind farm or hydropower installation.

India_3x549.jpg

gigawatts of solar capacity, more than double the total added in 2014. In phase one of the National Solar Mission, the government is soliciting bids to build 15 gigawatts of capacity across the country.

The results of the government’s first solar auctions have been striking. In one, held in Madhya Pradesh, Canadian developer SkyPower won the bidding with an offer of 5.05 rupees (about 7 U.S. cents) per kilowatt-hour. That auction, offering the chance to build 300 megawatts of solar capacity, was so oversold that it attracted bids totaling 2,200 megawatts, at rates well below the 7.04 rupees per kilowatt-hour that the Central Electricity Regulatory Commission has determined is the threshold of viability for solar photovoltaic projects.

In other words, solar builders in India are bidding unrealistically low prices for these projects, counting on the Indian government to make up the difference. Indeed, the government has initiated a scheme for public-private infrastructure projects, which will provide grants to solar developers “to support infrastructure projects that are economically justified but fall short of financial viability.”

Whether or not that funding will be enough to make these projects viable or profitable over the long term, the solar balloon in India continues to rise. When I met SkyPower CEO Kerry Adler, he vehemently defended the Toronto-based company’s India strategy and the prices at which it plans to build solar parks. “There are some suicidal bidders out there,” Adler acknowledged, but “SkyPower has never secured a contract it has failed to build. We’ve never lost money on one of these projects, and we don’t intend to start now.”

Be that as it may, some of India’s currently planned utility-scale solar projects will never get built, while others will get built and fail. And even the successful ones will not be sufficient to solve all of India’s energy challenges. Jairam Ramesh, the former environment minister, suggests that the country needs to think differently about renewable energy sources and not expect them to primarily serve “this vertically integrated model of electricity generation, where the bigger the [project the] better.” In some cases, smaller will be better.

Brick factories

That transformation is already happening. In southern Indian cities like Bangalore, many rooftops already have water tanks heated with solar energy, and the number of states that require rooftop solar on new construction is multiplying. Every town in India, even the dustiest roadside hamlet, has banners and billboards advertising small battery and inverter systems. A new energy ecosystem is arising in complex and not always predictable ways.

One day last summer, I visited a solar test site in a walled compound near the town of Challakere, in the dry scrubland a few hundred kilometers north of Bangalore. Run by the Bangalore–based Indian Institute of Science (known as IISc), it’s a concentrated-solar-power test array. Rows of shallow parabolic troughs, made of specially coated aluminum, stretch the length of more than two and a half football fields. Sunlight reflected from the troughs is concentrated onto water pipes above. Started up this fall, the system heats water in the pipes to 200 °C; the hot water goes to a heat exchanger attached to a small turbine that produces 100 kilowatts of electricity.

Funded by the Karnataka state government and the Solar Energy Research Institute for India and the United States, this array will be used to test various reflective materials and heat-transfer fluids (including, for instance, molten salt in addition to water). The objective, says IISc professor of materials engineering Praveen Ramamurthy, is to find the best combinations of components specific to conditions in India, a process that is badly needed for solar photovoltaic technology as well.

“Nobody is testing for the aging [of solar equipment] in India,” says Ramamurthy. “We get solar panels, but they’re certified for moderate climates in the U.S. and Europe, and we just adapt.”

Among the hazards to solar arrays in India are high temperatures and humidity, which tend to rot the adhesives that hold together conventional solar panels. Dust and degradation are also major problems. Ramamurthy is developing polymer composites to seal in and protect the photovoltaic cells. Solar photovoltaics will be the main source of solar power generation in India, but concentrated solar power is also of keen interest, because it can be used in ways other than generating electricity. Across India, for example, are small, independent factories that produce bricks by baking them in wood-fired stoves. That causes deforestation and heavy emissions of carbon dioxide. Using concentrated solar to bake the bricks would be a huge boon to the environment.

Such tailored solutions may seem inadequate to the scale of the challenges. The combination of failing utilities, heavy reliance on coal, a faulty grid, and an energy sector crippled by government subsidies and interference seems to argue that India has no chance: no path to economic growth and energy abundance except one that’s disastrous for the environment. But at ground level, the picture is more complicated and less bleak.

India_9x730.jpg

Reference Electrification Model, which is focused on planning electricity access for India and other developing countries.

“I visited a village today that doesn’t have electricity,” he told me in July, “and 100 meters away, the next village has good electricity. It’s confusing. They may get it next month, next decade, or never.”

Paradoxically, the sheer size of the task ahead—the fact that India is in the early stages of upgrading and modernizing its energy system—is in some ways an advantage. It happens to be embarking on its modernization phase at a time when prices for renewable-energy generation, and for the technology to make it work at the local level, are starting to rival prices for traditional fossil-fuel-generated power.

BMW, for example, said earlier this year that it will build a solar plant to meet 20 percent of the power demand at its factory near Chennai. Indian Railways, which operates the most extensive railroad system in the world and is the nation’s largest employer, plans to build a gigawatt of solar capacity in the next five years. By avoiding the cost of providing universal, grid-based electricity, India can concentrate on what works best for specific locations and specific needs. Every microgrid and local solar system deployed reduces by a fraction the need to extend the grid; every new renewable-energy system installed by a business or factory reduces the pressure to build ultra-mega power plants.

India_10x1128.jpg

A family in Sureshpur village in Biswan, Uttar Pradesh.

Because it’s industrializing now, India has the chance to remake itself using rapidly improving technologies. Today, it’s requiring new buildings to be solar-equipped and deploying entrepreneurial distribution models that bypass the broken utilities. Tomorrow, it could be relying on concentrated solar for small factories, or small nuclear reactors, or some other generation and distribution model that has yet to emerge.

That sense of dynamic possibility and improvisation was evident everywhere I went in India, from Delhi’s slums to the villages of Telangana. The Indian genius for adaptation and survival in chaotic and challenging circumstances provides hope that the country can solve the seemingly insurmountable challenge of expanding its economy in a clean and sustainable fashion. In many ways there is no choice. “India cannot afford to replicate the American or Chinese ‘Grow now, pay later’ model,” says Jairam Ramesh. “We cannot afford to say, ‘We’re going to have 25 years of 8 percent GDP growth, then do a cleanup act later.’”

Source|: India’s Energy Crisis | CVD

Nicely written analysis piece about India energy issue
 
.
India does have a lot of potential but it needs to take the right decisions, act like a big brother, grow and help others grow. Instead it is slow and makes other slow.
 
.
India does have a lot of potential but it needs to take the right decisions, act like a big brother, grow and help others grow. Instead it is slow and makes other slow.

Kya karein bhai... 1.25 billion logon ki democracy hain. To get everyone on the same page is a LOT of work!!!

Good article btw.
 
. . .
Can India modernize its manufacturing economy and supply electricity to its growing population without relying heavily on coal—and quite possibly destroying the global climate?

An old man wakes on the floor of a hut in a village in southern India. He is wrapped in a thin cotton blanket. Beside him, music wails softly on a transistor radio. A small wood fire smolders on the floor, filling the space with a light haze; above it,the bamboo timbers of the hut’s roof are charred to a glossy black.

The man’s name is Mallaiah Tokala, and he is the headman of Appapur village, in the Amrabad Tiger Reserve in Telangana state. On his forehead he wears the vibhuti, the sacred daub of white ash. He is uncertain of his exact age, but he is well into his 10th decade. He has lived in this village his whole life, a period that encompasses the tumultuous 20th-century history of India: the rise of Gandhi, the Salt March, the end of the Raj and the coming of independence, Partition and the bloodshed that followed, the assassination of Rajiv Gandhi and the dawning of a new era of sectarian violence and terrorism. And now he has lived long enough to witness the coming of electricity to Appapur, in the form of solar-powered lights and TVs and radios.


On the wall of the hut a single LED lightbulb glows softly, connected through the roof to a black cable that stretches to a 100-watt solar panel on the roof of a concrete house nearby. It is a direct outcome of the policies of the central government, a thousand miles to the north in Delhi. Appapur is a “solar village,” one of the showcases for the government’s drive to bring solar power to small, unelectrified villages across India.
India_2x1128.jpg

CAIT Climate Data Explorer, maintained by the World Resources Institute). China is now the world’s largest emitter of carbon. India’s per capita emissions as of 2012, the last year for which figures are available, were 1.68 tons per year, and its 2014 GDP was $1,631 per person. Its population is expected to grow by another 400 million people over the next three decades, bringing it to 1.7 billion by 2050. If India follows a path similar to China’s, that will add another eight billion tons of carbon to the atmosphere each year—more than total U.S. emissions in 2013. (For a look at how improved health care and medical technologies are affecting population growth worldwide, see our infographic “More Life, Less Death.”)

Such growth would easily swamp efforts elsewhere in the world to curtail carbon emissions, dooming any chance to head off the dire effects of global climate change. (Overall, the world will need to reduce its current annual emissions of 40 billion tons by 40 to 70 percent between now and 2050.) By 2050, India will have roughly 20 percent of the world’s population. If those people rely heavily on fossil fuels such as coal to expand the economy and raise their living standards to the level people in the rich world have enjoyed for the last 50 years, the result will be a climate catastrophe regardless of anything the United States or even China does to decrease its emissions. Reversing these trends will require radical transformations in two main areas: how India produces electricity, and how it distributes it.

Coal conundrum

The man charged with solving this puzzle is Piyush Goyal, the minister of power. (His full title is Minister of State with Independent Charge for Power, Coal and New & Renewable Energy.) With his political inheritance (his father, Ved Prakash Goyal, was a member of parliament and the minister of shipping under the government of Prime Minister Atal Bihari Vajpayee in the early 2000s), his suave manner, and his investment banking background, Goyal, 51, represents a new generation of Indian politicians from theBharatiya Janata Party (BJP) who have come to power during the decline of the once-dominant Congress Party. Despite the BJP’s origins in the Hindu nationalist party that emerged in opposition to the more secular Congress Party, these younger politicians tend to be pragmatists, seeking to encourage economic growth through neoliberal policies such as deregulation and privatization of state industries. Since his appointment, Goyal has emerged as a champion of renewable energy, calling for investments of $100 billion in renewables and another $50 billion in upgrading the country’s faltering grid. Almost every week he appears in the newspapers cutting the ribbon on a new solar power plant or wind farm or hydropower installation.

India_3x549.jpg

gigawatts of solar capacity, more than double the total added in 2014. In phase one of the National Solar Mission, the government is soliciting bids to build 15 gigawatts of capacity across the country.

The results of the government’s first solar auctions have been striking. In one, held in Madhya Pradesh, Canadian developer SkyPower won the bidding with an offer of 5.05 rupees (about 7 U.S. cents) per kilowatt-hour. That auction, offering the chance to build 300 megawatts of solar capacity, was so oversold that it attracted bids totaling 2,200 megawatts, at rates well below the 7.04 rupees per kilowatt-hour that the Central Electricity Regulatory Commission has determined is the threshold of viability for solar photovoltaic projects.

In other words, solar builders in India are bidding unrealistically low prices for these projects, counting on the Indian government to make up the difference. Indeed, the government has initiated a scheme for public-private infrastructure projects, which will provide grants to solar developers “to support infrastructure projects that are economically justified but fall short of financial viability.”

Whether or not that funding will be enough to make these projects viable or profitable over the long term, the solar balloon in India continues to rise. When I met SkyPower CEO Kerry Adler, he vehemently defended the Toronto-based company’s India strategy and the prices at which it plans to build solar parks. “There are some suicidal bidders out there,” Adler acknowledged, but “SkyPower has never secured a contract it has failed to build. We’ve never lost money on one of these projects, and we don’t intend to start now.”

Be that as it may, some of India’s currently planned utility-scale solar projects will never get built, while others will get built and fail. And even the successful ones will not be sufficient to solve all of India’s energy challenges. Jairam Ramesh, the former environment minister, suggests that the country needs to think differently about renewable energy sources and not expect them to primarily serve “this vertically integrated model of electricity generation, where the bigger the [project the] better.” In some cases, smaller will be better.

Brick factories

That transformation is already happening. In southern Indian cities like Bangalore, many rooftops already have water tanks heated with solar energy, and the number of states that require rooftop solar on new construction is multiplying. Every town in India, even the dustiest roadside hamlet, has banners and billboards advertising small battery and inverter systems. A new energy ecosystem is arising in complex and not always predictable ways.

One day last summer, I visited a solar test site in a walled compound near the town of Challakere, in the dry scrubland a few hundred kilometers north of Bangalore. Run by the Bangalore–based Indian Institute of Science (known as IISc), it’s a concentrated-solar-power test array. Rows of shallow parabolic troughs, made of specially coated aluminum, stretch the length of more than two and a half football fields. Sunlight reflected from the troughs is concentrated onto water pipes above. Started up this fall, the system heats water in the pipes to 200 °C; the hot water goes to a heat exchanger attached to a small turbine that produces 100 kilowatts of electricity.

Funded by the Karnataka state government and the Solar Energy Research Institute for India and the United States, this array will be used to test various reflective materials and heat-transfer fluids (including, for instance, molten salt in addition to water). The objective, says IISc professor of materials engineering Praveen Ramamurthy, is to find the best combinations of components specific to conditions in India, a process that is badly needed for solar photovoltaic technology as well.

“Nobody is testing for the aging [of solar equipment] in India,” says Ramamurthy. “We get solar panels, but they’re certified for moderate climates in the U.S. and Europe, and we just adapt.”

Among the hazards to solar arrays in India are high temperatures and humidity, which tend to rot the adhesives that hold together conventional solar panels. Dust and degradation are also major problems. Ramamurthy is developing polymer composites to seal in and protect the photovoltaic cells. Solar photovoltaics will be the main source of solar power generation in India, but concentrated solar power is also of keen interest, because it can be used in ways other than generating electricity. Across India, for example, are small, independent factories that produce bricks by baking them in wood-fired stoves. That causes deforestation and heavy emissions of carbon dioxide. Using concentrated solar to bake the bricks would be a huge boon to the environment.

Such tailored solutions may seem inadequate to the scale of the challenges. The combination of failing utilities, heavy reliance on coal, a faulty grid, and an energy sector crippled by government subsidies and interference seems to argue that India has no chance: no path to economic growth and energy abundance except one that’s disastrous for the environment. But at ground level, the picture is more complicated and less bleak.

India_9x730.jpg

Reference Electrification Model, which is focused on planning electricity access for India and other developing countries.

“I visited a village today that doesn’t have electricity,” he told me in July, “and 100 meters away, the next village has good electricity. It’s confusing. They may get it next month, next decade, or never.”

Paradoxically, the sheer size of the task ahead—the fact that India is in the early stages of upgrading and modernizing its energy system—is in some ways an advantage. It happens to be embarking on its modernization phase at a time when prices for renewable-energy generation, and for the technology to make it work at the local level, are starting to rival prices for traditional fossil-fuel-generated power.

BMW, for example, said earlier this year that it will build a solar plant to meet 20 percent of the power demand at its factory near Chennai. Indian Railways, which operates the most extensive railroad system in the world and is the nation’s largest employer, plans to build a gigawatt of solar capacity in the next five years. By avoiding the cost of providing universal, grid-based electricity, India can concentrate on what works best for specific locations and specific needs. Every microgrid and local solar system deployed reduces by a fraction the need to extend the grid; every new renewable-energy system installed by a business or factory reduces the pressure to build ultra-mega power plants.

India_10x1128.jpg

A family in Sureshpur village in Biswan, Uttar Pradesh.

Because it’s industrializing now, India has the chance to remake itself using rapidly improving technologies. Today, it’s requiring new buildings to be solar-equipped and deploying entrepreneurial distribution models that bypass the broken utilities. Tomorrow, it could be relying on concentrated solar for small factories, or small nuclear reactors, or some other generation and distribution model that has yet to emerge.

That sense of dynamic possibility and improvisation was evident everywhere I went in India, from Delhi’s slums to the villages of Telangana. The Indian genius for adaptation and survival in chaotic and challenging circumstances provides hope that the country can solve the seemingly insurmountable challenge of expanding its economy in a clean and sustainable fashion. In many ways there is no choice. “India cannot afford to replicate the American or Chinese ‘Grow now, pay later’ model,” says Jairam Ramesh. “We cannot afford to say, ‘We’re going to have 25 years of 8 percent GDP growth, then do a cleanup act later.’”

Source|: India’s Energy Crisis | CVD

Nicely written analysis piece about India energy issue
A copy paste of a copy paste job... Good Job.

A meaningless write-up...endless sea of words.. and what has author achieved in the end.. a reader confused aboout what the heck I just read.
 
.
A copy paste of a copy paste job... Good Job.

A meaningless write-up...endless sea of words.. and what has author achieved in the end.. a reader confused aboout what the heck I just read.

It address problem lies within India how to produce electricity without harming the environment and distribute it equally? Also it tell that govt need to encourage entrepreneurship in the sector. As well as opportunity for India for green energy development as it is still developing in rapid tech improving world? Also issue of brick factory that they need to working together and improve productivity and cause less harm to environment?

Well, i just read it on cvd then paste it here, and i already paste the source i read it from
 
.
Agreed with the article and democracy. Still believe that

worst democracy is better than best dictatorship

China in the 60's was going through one of the toughest times in its history. Disasters made both by man and nature caused millions to die off starvation. That was also a period when the communist ideology was running at its highest. One of the most popular slogans was "I'd rather eat socialist grass then capitalist rice", meaning even though grass tastes bad and has little nutrition, it is still better than rice as long as it is grown in a socialist society.

Fast forward 50 years, similar idiotic slogans are now coming from the "democratic" world. Talk about brash wash, goes to tell how east it is for people to be fooled. Oh humanity, we aren't as smart as we think, are we?!
 
.
China in the 60's was going through one of the toughest times in its history. Disasters made both by man and nature caused millions to die off starvation. That was also a period when the communist ideology was running at its highest. One of the most popular slogans was "I'd rather eat socialist grass then capitalist rice", meaning even though grass tastes bad and has little nutrition, it is still better than rice as long as it is grown in a socialist society.

Fast forward 50 years, similar idiotic slogans are now coming from the "democratic" world. Talk about brash wash, goes to tell how east it is for people to be fooled. Oh humanity, we aren't as smart as we think, are we?!

To me the path to progress taken by China is unique. Revolution and huge sacrifices meant rapid progress. But very high cost. Pakistan should choose evolution rather than revolution.
 
.
Yes our development path is unique. But it is a path that we chose. For the first time in our past 200 hundred years we stopped mimicking western systems.

Our "dictators" realized China was far too behind in everything. We had to get stronger, or we would've been bullied again. Our people would've remained weak, the country would lose Tibet, Taiwan, SCS and so on. But we had nothing to build on. The only thing we had was people. So hard way was the only way. But to be honest, nobody saw this coming. Such dramatic growth for so long. I don't agree that we have had a revolution. What happened was a liberation. Our people's minds were liberated. When 1.3 people want to get stronger and richer it is very hard to stop.

And of course, no one anticipated the cost that came with it. Fortunately there is still time to fix it. We have the means and will to do it.

Wouldn't it have been wonderful if we 20X our GDP in just 30+ years while keeping our land clean and in the mean time develop a corruption free, democratic society? I guess that's the type of development path you are looking for for your country. Well, go for it. India is already half way there according to them :) Their country is "free" and "democratic". What happens next we shall see...
 
. .
Article is nothing more than an attempt at trolling
the west is responsible for 150 years of pollution generated by way of industrialization

We have made commitments to reduce pollution by 30% by 2030, and we will do that

We are working towards generating 51 % of our electricity through renewable sources by 2030,
But if the west believes that we will shut down our coal plants which generate 150000 MW, immediately, then they are sorely mistaken

What we plan to do is replace older, inefficient coal fired power plants with modern efficient
Ones, which will produce lower emissions
 
.

Country Latest Posts

Back
Top Bottom