JaiMin
FULL MEMBER
- Joined
- Mar 23, 2015
- Messages
- 193
- Reaction score
- 1
- Country
- Location
Can India modernize its manufacturing economy and supply electricity to its growing population without relying heavily on coal—and quite possibly destroying the global climate?
The man’s name is Mallaiah Tokala, and he is the headman of Appapur village, in the Amrabad Tiger Reserve in Telangana state. On his forehead he wears the vibhuti, the sacred daub of white ash. He is uncertain of his exact age, but he is well into his 10th decade. He has lived in this village his whole life, a period that encompasses the tumultuous 20th-century history of India: the rise of Gandhi, the Salt March, the end of the Raj and the coming of independence, Partition and the bloodshed that followed, the assassination of Rajiv Gandhi and the dawning of a new era of sectarian violence and terrorism. And now he has lived long enough to witness the coming of electricity to Appapur, in the form of solar-powered lights and TVs and radios.
On the wall of the hut a single LED lightbulb glows softly, connected through the roof to a black cable that stretches to a 100-watt solar panel on the roof of a concrete house nearby. It is a direct outcome of the policies of the central government, a thousand miles to the north in Delhi. Appapur is a “solar village,” one of the showcases for the government’s drive to bring solar power to small, unelectrified villages across India.
CAIT Climate Data Explorer, maintained by the World Resources Institute). China is now the world’s largest emitter of carbon. India’s per capita emissions as of 2012, the last year for which figures are available, were 1.68 tons per year, and its 2014 GDP was $1,631 per person. Its population is expected to grow by another 400 million people over the next three decades, bringing it to 1.7 billion by 2050. If India follows a path similar to China’s, that will add another eight billion tons of carbon to the atmosphere each year—more than total U.S. emissions in 2013. (For a look at how improved health care and medical technologies are affecting population growth worldwide, see our infographic “More Life, Less Death.”)
Such growth would easily swamp efforts elsewhere in the world to curtail carbon emissions, dooming any chance to head off the dire effects of global climate change. (Overall, the world will need to reduce its current annual emissions of 40 billion tons by 40 to 70 percent between now and 2050.) By 2050, India will have roughly 20 percent of the world’s population. If those people rely heavily on fossil fuels such as coal to expand the economy and raise their living standards to the level people in the rich world have enjoyed for the last 50 years, the result will be a climate catastrophe regardless of anything the United States or even China does to decrease its emissions. Reversing these trends will require radical transformations in two main areas: how India produces electricity, and how it distributes it.
Coal conundrum
The man charged with solving this puzzle is Piyush Goyal, the minister of power. (His full title is Minister of State with Independent Charge for Power, Coal and New & Renewable Energy.) With his political inheritance (his father, Ved Prakash Goyal, was a member of parliament and the minister of shipping under the government of Prime Minister Atal Bihari Vajpayee in the early 2000s), his suave manner, and his investment banking background, Goyal, 51, represents a new generation of Indian politicians from theBharatiya Janata Party (BJP) who have come to power during the decline of the once-dominant Congress Party. Despite the BJP’s origins in the Hindu nationalist party that emerged in opposition to the more secular Congress Party, these younger politicians tend to be pragmatists, seeking to encourage economic growth through neoliberal policies such as deregulation and privatization of state industries. Since his appointment, Goyal has emerged as a champion of renewable energy, calling for investments of $100 billion in renewables and another $50 billion in upgrading the country’s faltering grid. Almost every week he appears in the newspapers cutting the ribbon on a new solar power plant or wind farm or hydropower installation.
gigawatts of solar capacity, more than double the total added in 2014. In phase one of the National Solar Mission, the government is soliciting bids to build 15 gigawatts of capacity across the country.
The results of the government’s first solar auctions have been striking. In one, held in Madhya Pradesh, Canadian developer SkyPower won the bidding with an offer of 5.05 rupees (about 7 U.S. cents) per kilowatt-hour. That auction, offering the chance to build 300 megawatts of solar capacity, was so oversold that it attracted bids totaling 2,200 megawatts, at rates well below the 7.04 rupees per kilowatt-hour that the Central Electricity Regulatory Commission has determined is the threshold of viability for solar photovoltaic projects.
In other words, solar builders in India are bidding unrealistically low prices for these projects, counting on the Indian government to make up the difference. Indeed, the government has initiated a scheme for public-private infrastructure projects, which will provide grants to solar developers “to support infrastructure projects that are economically justified but fall short of financial viability.”
Whether or not that funding will be enough to make these projects viable or profitable over the long term, the solar balloon in India continues to rise. When I met SkyPower CEO Kerry Adler, he vehemently defended the Toronto-based company’s India strategy and the prices at which it plans to build solar parks. “There are some suicidal bidders out there,” Adler acknowledged, but “SkyPower has never secured a contract it has failed to build. We’ve never lost money on one of these projects, and we don’t intend to start now.”
Be that as it may, some of India’s currently planned utility-scale solar projects will never get built, while others will get built and fail. And even the successful ones will not be sufficient to solve all of India’s energy challenges. Jairam Ramesh, the former environment minister, suggests that the country needs to think differently about renewable energy sources and not expect them to primarily serve “this vertically integrated model of electricity generation, where the bigger the [project the] better.” In some cases, smaller will be better.
Brick factories
That transformation is already happening. In southern Indian cities like Bangalore, many rooftops already have water tanks heated with solar energy, and the number of states that require rooftop solar on new construction is multiplying. Every town in India, even the dustiest roadside hamlet, has banners and billboards advertising small battery and inverter systems. A new energy ecosystem is arising in complex and not always predictable ways.
One day last summer, I visited a solar test site in a walled compound near the town of Challakere, in the dry scrubland a few hundred kilometers north of Bangalore. Run by the Bangalore–based Indian Institute of Science (known as IISc), it’s a concentrated-solar-power test array. Rows of shallow parabolic troughs, made of specially coated aluminum, stretch the length of more than two and a half football fields. Sunlight reflected from the troughs is concentrated onto water pipes above. Started up this fall, the system heats water in the pipes to 200 °C; the hot water goes to a heat exchanger attached to a small turbine that produces 100 kilowatts of electricity.
Funded by the Karnataka state government and the Solar Energy Research Institute for India and the United States, this array will be used to test various reflective materials and heat-transfer fluids (including, for instance, molten salt in addition to water). The objective, says IISc professor of materials engineering Praveen Ramamurthy, is to find the best combinations of components specific to conditions in India, a process that is badly needed for solar photovoltaic technology as well.
“Nobody is testing for the aging [of solar equipment] in India,” says Ramamurthy. “We get solar panels, but they’re certified for moderate climates in the U.S. and Europe, and we just adapt.”
Among the hazards to solar arrays in India are high temperatures and humidity, which tend to rot the adhesives that hold together conventional solar panels. Dust and degradation are also major problems. Ramamurthy is developing polymer composites to seal in and protect the photovoltaic cells. Solar photovoltaics will be the main source of solar power generation in India, but concentrated solar power is also of keen interest, because it can be used in ways other than generating electricity. Across India, for example, are small, independent factories that produce bricks by baking them in wood-fired stoves. That causes deforestation and heavy emissions of carbon dioxide. Using concentrated solar to bake the bricks would be a huge boon to the environment.
Such tailored solutions may seem inadequate to the scale of the challenges. The combination of failing utilities, heavy reliance on coal, a faulty grid, and an energy sector crippled by government subsidies and interference seems to argue that India has no chance: no path to economic growth and energy abundance except one that’s disastrous for the environment. But at ground level, the picture is more complicated and less bleak.
Reference Electrification Model, which is focused on planning electricity access for India and other developing countries.
“I visited a village today that doesn’t have electricity,” he told me in July, “and 100 meters away, the next village has good electricity. It’s confusing. They may get it next month, next decade, or never.”
Paradoxically, the sheer size of the task ahead—the fact that India is in the early stages of upgrading and modernizing its energy system—is in some ways an advantage. It happens to be embarking on its modernization phase at a time when prices for renewable-energy generation, and for the technology to make it work at the local level, are starting to rival prices for traditional fossil-fuel-generated power.
BMW, for example, said earlier this year that it will build a solar plant to meet 20 percent of the power demand at its factory near Chennai. Indian Railways, which operates the most extensive railroad system in the world and is the nation’s largest employer, plans to build a gigawatt of solar capacity in the next five years. By avoiding the cost of providing universal, grid-based electricity, India can concentrate on what works best for specific locations and specific needs. Every microgrid and local solar system deployed reduces by a fraction the need to extend the grid; every new renewable-energy system installed by a business or factory reduces the pressure to build ultra-mega power plants.
A family in Sureshpur village in Biswan, Uttar Pradesh.
Because it’s industrializing now, India has the chance to remake itself using rapidly improving technologies. Today, it’s requiring new buildings to be solar-equipped and deploying entrepreneurial distribution models that bypass the broken utilities. Tomorrow, it could be relying on concentrated solar for small factories, or small nuclear reactors, or some other generation and distribution model that has yet to emerge.
That sense of dynamic possibility and improvisation was evident everywhere I went in India, from Delhi’s slums to the villages of Telangana. The Indian genius for adaptation and survival in chaotic and challenging circumstances provides hope that the country can solve the seemingly insurmountable challenge of expanding its economy in a clean and sustainable fashion. In many ways there is no choice. “India cannot afford to replicate the American or Chinese ‘Grow now, pay later’ model,” says Jairam Ramesh. “We cannot afford to say, ‘We’re going to have 25 years of 8 percent GDP growth, then do a cleanup act later.’”
Source|: India’s Energy Crisis | CVD
Nicely written analysis piece about India energy issue
- By Richard Martin on October 7, 2015
The man’s name is Mallaiah Tokala, and he is the headman of Appapur village, in the Amrabad Tiger Reserve in Telangana state. On his forehead he wears the vibhuti, the sacred daub of white ash. He is uncertain of his exact age, but he is well into his 10th decade. He has lived in this village his whole life, a period that encompasses the tumultuous 20th-century history of India: the rise of Gandhi, the Salt March, the end of the Raj and the coming of independence, Partition and the bloodshed that followed, the assassination of Rajiv Gandhi and the dawning of a new era of sectarian violence and terrorism. And now he has lived long enough to witness the coming of electricity to Appapur, in the form of solar-powered lights and TVs and radios.
On the wall of the hut a single LED lightbulb glows softly, connected through the roof to a black cable that stretches to a 100-watt solar panel on the roof of a concrete house nearby. It is a direct outcome of the policies of the central government, a thousand miles to the north in Delhi. Appapur is a “solar village,” one of the showcases for the government’s drive to bring solar power to small, unelectrified villages across India.
CAIT Climate Data Explorer, maintained by the World Resources Institute). China is now the world’s largest emitter of carbon. India’s per capita emissions as of 2012, the last year for which figures are available, were 1.68 tons per year, and its 2014 GDP was $1,631 per person. Its population is expected to grow by another 400 million people over the next three decades, bringing it to 1.7 billion by 2050. If India follows a path similar to China’s, that will add another eight billion tons of carbon to the atmosphere each year—more than total U.S. emissions in 2013. (For a look at how improved health care and medical technologies are affecting population growth worldwide, see our infographic “More Life, Less Death.”)
Such growth would easily swamp efforts elsewhere in the world to curtail carbon emissions, dooming any chance to head off the dire effects of global climate change. (Overall, the world will need to reduce its current annual emissions of 40 billion tons by 40 to 70 percent between now and 2050.) By 2050, India will have roughly 20 percent of the world’s population. If those people rely heavily on fossil fuels such as coal to expand the economy and raise their living standards to the level people in the rich world have enjoyed for the last 50 years, the result will be a climate catastrophe regardless of anything the United States or even China does to decrease its emissions. Reversing these trends will require radical transformations in two main areas: how India produces electricity, and how it distributes it.
Coal conundrum
The man charged with solving this puzzle is Piyush Goyal, the minister of power. (His full title is Minister of State with Independent Charge for Power, Coal and New & Renewable Energy.) With his political inheritance (his father, Ved Prakash Goyal, was a member of parliament and the minister of shipping under the government of Prime Minister Atal Bihari Vajpayee in the early 2000s), his suave manner, and his investment banking background, Goyal, 51, represents a new generation of Indian politicians from theBharatiya Janata Party (BJP) who have come to power during the decline of the once-dominant Congress Party. Despite the BJP’s origins in the Hindu nationalist party that emerged in opposition to the more secular Congress Party, these younger politicians tend to be pragmatists, seeking to encourage economic growth through neoliberal policies such as deregulation and privatization of state industries. Since his appointment, Goyal has emerged as a champion of renewable energy, calling for investments of $100 billion in renewables and another $50 billion in upgrading the country’s faltering grid. Almost every week he appears in the newspapers cutting the ribbon on a new solar power plant or wind farm or hydropower installation.
gigawatts of solar capacity, more than double the total added in 2014. In phase one of the National Solar Mission, the government is soliciting bids to build 15 gigawatts of capacity across the country.
The results of the government’s first solar auctions have been striking. In one, held in Madhya Pradesh, Canadian developer SkyPower won the bidding with an offer of 5.05 rupees (about 7 U.S. cents) per kilowatt-hour. That auction, offering the chance to build 300 megawatts of solar capacity, was so oversold that it attracted bids totaling 2,200 megawatts, at rates well below the 7.04 rupees per kilowatt-hour that the Central Electricity Regulatory Commission has determined is the threshold of viability for solar photovoltaic projects.
In other words, solar builders in India are bidding unrealistically low prices for these projects, counting on the Indian government to make up the difference. Indeed, the government has initiated a scheme for public-private infrastructure projects, which will provide grants to solar developers “to support infrastructure projects that are economically justified but fall short of financial viability.”
Whether or not that funding will be enough to make these projects viable or profitable over the long term, the solar balloon in India continues to rise. When I met SkyPower CEO Kerry Adler, he vehemently defended the Toronto-based company’s India strategy and the prices at which it plans to build solar parks. “There are some suicidal bidders out there,” Adler acknowledged, but “SkyPower has never secured a contract it has failed to build. We’ve never lost money on one of these projects, and we don’t intend to start now.”
Be that as it may, some of India’s currently planned utility-scale solar projects will never get built, while others will get built and fail. And even the successful ones will not be sufficient to solve all of India’s energy challenges. Jairam Ramesh, the former environment minister, suggests that the country needs to think differently about renewable energy sources and not expect them to primarily serve “this vertically integrated model of electricity generation, where the bigger the [project the] better.” In some cases, smaller will be better.
Brick factories
That transformation is already happening. In southern Indian cities like Bangalore, many rooftops already have water tanks heated with solar energy, and the number of states that require rooftop solar on new construction is multiplying. Every town in India, even the dustiest roadside hamlet, has banners and billboards advertising small battery and inverter systems. A new energy ecosystem is arising in complex and not always predictable ways.
One day last summer, I visited a solar test site in a walled compound near the town of Challakere, in the dry scrubland a few hundred kilometers north of Bangalore. Run by the Bangalore–based Indian Institute of Science (known as IISc), it’s a concentrated-solar-power test array. Rows of shallow parabolic troughs, made of specially coated aluminum, stretch the length of more than two and a half football fields. Sunlight reflected from the troughs is concentrated onto water pipes above. Started up this fall, the system heats water in the pipes to 200 °C; the hot water goes to a heat exchanger attached to a small turbine that produces 100 kilowatts of electricity.
Funded by the Karnataka state government and the Solar Energy Research Institute for India and the United States, this array will be used to test various reflective materials and heat-transfer fluids (including, for instance, molten salt in addition to water). The objective, says IISc professor of materials engineering Praveen Ramamurthy, is to find the best combinations of components specific to conditions in India, a process that is badly needed for solar photovoltaic technology as well.
“Nobody is testing for the aging [of solar equipment] in India,” says Ramamurthy. “We get solar panels, but they’re certified for moderate climates in the U.S. and Europe, and we just adapt.”
Among the hazards to solar arrays in India are high temperatures and humidity, which tend to rot the adhesives that hold together conventional solar panels. Dust and degradation are also major problems. Ramamurthy is developing polymer composites to seal in and protect the photovoltaic cells. Solar photovoltaics will be the main source of solar power generation in India, but concentrated solar power is also of keen interest, because it can be used in ways other than generating electricity. Across India, for example, are small, independent factories that produce bricks by baking them in wood-fired stoves. That causes deforestation and heavy emissions of carbon dioxide. Using concentrated solar to bake the bricks would be a huge boon to the environment.
Such tailored solutions may seem inadequate to the scale of the challenges. The combination of failing utilities, heavy reliance on coal, a faulty grid, and an energy sector crippled by government subsidies and interference seems to argue that India has no chance: no path to economic growth and energy abundance except one that’s disastrous for the environment. But at ground level, the picture is more complicated and less bleak.
Reference Electrification Model, which is focused on planning electricity access for India and other developing countries.
“I visited a village today that doesn’t have electricity,” he told me in July, “and 100 meters away, the next village has good electricity. It’s confusing. They may get it next month, next decade, or never.”
Paradoxically, the sheer size of the task ahead—the fact that India is in the early stages of upgrading and modernizing its energy system—is in some ways an advantage. It happens to be embarking on its modernization phase at a time when prices for renewable-energy generation, and for the technology to make it work at the local level, are starting to rival prices for traditional fossil-fuel-generated power.
BMW, for example, said earlier this year that it will build a solar plant to meet 20 percent of the power demand at its factory near Chennai. Indian Railways, which operates the most extensive railroad system in the world and is the nation’s largest employer, plans to build a gigawatt of solar capacity in the next five years. By avoiding the cost of providing universal, grid-based electricity, India can concentrate on what works best for specific locations and specific needs. Every microgrid and local solar system deployed reduces by a fraction the need to extend the grid; every new renewable-energy system installed by a business or factory reduces the pressure to build ultra-mega power plants.
A family in Sureshpur village in Biswan, Uttar Pradesh.
Because it’s industrializing now, India has the chance to remake itself using rapidly improving technologies. Today, it’s requiring new buildings to be solar-equipped and deploying entrepreneurial distribution models that bypass the broken utilities. Tomorrow, it could be relying on concentrated solar for small factories, or small nuclear reactors, or some other generation and distribution model that has yet to emerge.
That sense of dynamic possibility and improvisation was evident everywhere I went in India, from Delhi’s slums to the villages of Telangana. The Indian genius for adaptation and survival in chaotic and challenging circumstances provides hope that the country can solve the seemingly insurmountable challenge of expanding its economy in a clean and sustainable fashion. In many ways there is no choice. “India cannot afford to replicate the American or Chinese ‘Grow now, pay later’ model,” says Jairam Ramesh. “We cannot afford to say, ‘We’re going to have 25 years of 8 percent GDP growth, then do a cleanup act later.’”
Source|: India’s Energy Crisis | CVD
Nicely written analysis piece about India energy issue