Follow along with the video below to see how to install our site as a web app on your home screen.
Note: This feature may not be available in some browsers.
New Recruit
I dont think this is needed India DID SEND men in space back in 1984 with russian help.
sending men in space and getting them back is of no use.
u gotta send robots or payloads to study planets which has much more scientifical importance.
Space Science:
Chandrayaan-2 updates:
Chandrayaan-2 mission is planned to have an Orbiter/Lander/Rover configuration. The mission is expected to be
realised by 2014. It is an Indo-Russian collaborative mission. The scientific objectives of the mission are to further
improve our understanding of origin and evolution of the Moon using instruments onboard Orbiter and in-situ
analysis of lunar samples and studies of lunar regolith properties (remote and direct analysis) using Robotics/Rover.
Orbiter Craft (OC)
Chandrayaan-2 Structure configuration has been changed from I2K
to I3K configuration due to the revision of payload lift off capacity
by GSLV. This change will enable accommodating larger propellant
tanks. The mission strategy was revised to inject the satellite in a
lower initial orbit (170 X 16980km) with a higher lift-off mass of
3200kg and the Propulsion System Configuration changed to
increase fuel carrying capability of the satellite.
The other activities completed are: finalisation of all electrical and
mechanical interfaces including the payload interfaces; Preliminary
Design Reviews (PDRs) of Bus Systems (Power, Attitude Orbit
Control Electronics, Telemetry, Tracking and Command Baseband
Systems, RF Systems, Data Handling System, Structure, Thermal Control System, Propulsion System); all
systems accommodation studies and initial thermal analysis.
Rover
The activities completed so far are: configuration of Rover and Payloads, Preliminary Design of all subsystems
and PDR of all Rover subsystems. Lunar Terrain Test Facility has been established at ISITE for simulation of
reduced g and Lunar soil.
Russian-GK Lander Craft (LC) Interfaces:
Three interface meetings took place with Russian delegates apart
from regular mail communication and teleconferences. OC-LC and LC-Rover Interfaces and Lander-Rover
communication scheme were finalised. Landing site identification has been initiated and schedules/sequence of
activities is worked out.
Indian MARS Mission
ISRO is planning to undertake a mission to the planet Mars during 2013 timeframe. The Project Report for Indian Mars Orbiter mission has been submitted for approval of Government of India. The tentative scientific objective for the Mars mission will be to focus on life, climate, geology, origin, evolution and sustainability of life
on the planet.
Scientific payloads have been short-listed by the ADCOS review committee. Baseline, solar array and reflector configuration of the satellite have been finalised. Frequency filing for communication subsystem is under progress.
Solar mission: ADITYA-1 space based Solar Coronagraph
ADITYA-1 is the first space based Solar Coronagraph intended to study the outermost region of the sun called Corona. ADITYA-1 in the visible and near IR bands will study the Coronal Mass Ejection such as the coronal magnetic field structures, evolution of the coronal magnetic field etc., and consequently the crucial physical parameters for space weather.
The activities of ADITYA-1 are: MoU signed with the IIA for development and delivery of solar coronagraph payload; preliminary design of the optical systems of ADITYA-1 finalized and design document generated; Preliminary Design Review of the optical design completed; Trade-off studies on the selection of detector system completed and the list of subsystem packages along with power and mass budget generated. Mechanical reconfiguration of the satellite is in progress.
Astronomy mission: ASTROSAT
ASTROSAT is the first dedicated Indian Astronomy mission, which will enable multi-wavelength observations of the celestial bodies, cosmic sources in X-ray, visible and UV spectral bands simultaneously. The scientific payloads cover the Visible (3500-6000 Å), UV (1300-3000 Å), soft and hard X-ray regimes (0.5-8 keV; 3-80 keV). The uniqueness of ASTROSAT lies in its wide spectral coverage extending over visible, UV, soft X and hard X ray regions.
The scientific objectives of ASTROSAT are:
Multiwavelength studies of cosmic sources,
Monitoring the X-ray sky for new transients,
All sky survey in the hard X-ray and UV bands,
Broadband spectroscopic studies of X-ray binaries,
AGN, SNRs, clusters of galaxies and stellar coronae,
Studies of periodic and non-periodic variability of X-ray sources and monitoring intensity of known sources and detecting outbursts and luminosity variations.
GSLV mkIII from the launchpad (mock up being used for stability tests).
ISRO's new 'monster rocket'
snapshots:
Uploaded with ImageShack.us
i cant tell everyone here how happy i am after seeing this pic. a true fat middle finger in the *** of every country that stopped us from developing a rocket in the past.