http://www.cdi.org/PDFs/IndiaMIRV.pdf
Are MIRVs and Satellite Integration and Dispensation Mutually Inclusive?
An Analysis of India’s Capabilities
April 10, 2008
Kartik Bommakanti
Despite some differences, integration of satellites and their orbital dispensation, and integration of multiple warheads and their delivery vehicles are often treated as though they are identical processes. This paper first briefly looks at the extent to which satellite integration and dispensing capabilities assisted in the development of Multiple Independently Targetable Re-entry Vehicle (MIRV) technology in the United States. It then will demonstrate that concerns about India-U.S. civilian space cooperation leading to India’s development of a MIRV capability are misguided. India already possesses incipient capabilities to MIRV its missiles, but this does not mean that it can immediately secure a full-fledged MIRV capability, because there are a range of conditions that would affect its development of MIRV technology. As a cautionary note, the detailed effort here is intended to outline what India is potentially capable of doing; therefore the following analysis should not be construed as meaning that India will or should do the things laid out.
There are five key technologies that are vital for the development of MIRV technology. These are: rocket engines that are restartable, vernier rockets or engines, inertial guidance technology that has high reliability and precision, re-entry vehicles that are highly accurate, and high efficiency miniaturized warheads.1 A MIRV “bus” is a receptacle that carries the re-entry vehicles, which carry the warhead, and the guidance and control systems are built into the upper stage of the missile.2 The bus is maneuverable, makes efficient on-orbit trajectory shifts, and releases each re-entry vehicle in sequence.3 To attain these fine adjustments and movement, vernier rockets or engines are used to draw the bus away from the rapidly dropping re-entry vehicles.4
The defining feature of MIRVed missiles is their capability to deliver multiple warheads along separate trajectories.5 MIRVs provide targeting flexibility, whether it is against a single target or against multiple targets. They can be used to target several areas, provided they are within the ambit of separation generated by the MIRVs, in effect within its footprint.6
In the United States during the 1960s, the direct conceptual and technological forerunner to the MIRV system was the Titan III Tran-stage, a Post Boost Control System (PBCS) or “bus” that was developed for delivering multiple satellite payloads into orbit.7 The Transtage represented a true “bus,” but it did not proffer any tangible benefits in achieving the accuracy necessary for delivering multiple warheads.8 The Transtage demonstrated how stopping and restarting its hypergolic (liquid propellants) engine and its capacity to shift orbit to emplace satellites on different orbital trajectories could assist in the realization of a MIRV capability.9
As a declassified Department of Defense (DOD) document reveals, MIRV development can be traced as such: “Fallout gained from several space programs, not all associated with military space applications, was a series of developments directly adaptable to the realization of maneuverable platforms for ICBM use.”10
Given the dual-use nature of space technology, what can one make of the claims that increased civilian space cooperation between the United States and India will result in transfer of technology that may bring integration and delivery capabilities warheads into India’s arsenal? The National Aeronautics and Space Administration (NASA) is poised to send two instruments aboard India’s Polar Satellite Launch Vehicle (PSLV) in 2008. Raising concerns about India-U.S. civilian space cooperation, one analyst, Jennifer Kline, reached the suggestive conclusion that technical “know-how” about satellite integration capabilities will enable India to MIRV its ballistic missiles:
While there is little concern that the inclusion of the M3 and Mini-SAR on the Chandrayaan-I will result in a technology transfer of any great significance, there remain lingering apprehensions among some Washington-based missile experts about the potential transfer of “tacit knowledge” skills in the form of payload integration assistance for the lunar mission that might later be exploited for military functions. The principal concern is that if U.S. system integration specialists work with Indian engineers to demonstrate the best method for integrating payloads into space vehicles, then critical tacit knowledge skills that can only be learned by "doing" will transfer into the hands of the Indian engineers. This know-how is also relevant to certain military activities, such as integrating multiple nuclear warhead payloads into inter-continental ballistic missiles (ICBMs). In the late 1990s, a major controversy erupted when two U.S. firms, Loral and Hughes Aircraft, were found to have transferred tacit knowledge of this kind to China during discussions aimed at overcoming technical obstacles to the successful launch of their satellites on Chinese space launch vehicles. Similarly, any U.S. assistance in preparing the Indian lunar mission with regard to automated deployment structures in space could conceivably help India develop penetration aids for its ballistic missiles, which might reduce the effectiveness of U.S. missile defense systems. Indeed, the possibility that transferred U.S. technology might be utilized for improving Indian ICBMs or for expanding Indian capacity to construct ICBMs remains a major source of controversy in the U.S.-India space cooperation deal.11
This point is often regurgitated and incidentally became one reason for suspending American commercial satellite launches from Chinese space launch vehicles in the late 1990s. Just as there was no substantive reason for suspending cooperation with China then, there is nothing to be concerned about current or expanded India-U.S. space cooperation either.
A brief retrospective would help clarify some issues. In 1998, controversy erupted in the United States over the telecom giant Motorola’s alleged transfer to China of the Iridium Smart Dispenser. Motorola’s Smart Dispenser releases multiple satellites into orbit, which some alleged enabled the Chinese to develop a MIRV capability.12 But as the House Select Subcommittee report on China’s space and missile forces, also known as the Cox report, noted in 1998, “The PRC [People’s Republic of China, or China] has demonstrated all of the techniques that are required for developing a MIRV bus, and that the PRC could develop a MIRV dispensing platform within a short period of time after making a decision to proceed.”13 This statement is reinforced by two additional facts. As early as 1981, China had dispensed three satellites from a single platform which gave “it an incipient multiple-warhead capability.”14 Secondly, Motorola did not transfer design
information of the Iridium dispenser; instead, the company laid out specific technological parameters based on which Chinese engineers developed through indigenous effort a satellite dispenser to Motorola’s needs.15 The obvious conclusion one immediately derives is that China already wielded the technological precursors for the development of a MIRV capability and no real net technology transfer actually accrued to China’s MIRV development program.
As China expert Michael Swaine noted in 1998, “Among those who look at Chinese military capabilities, there’s a fairly strong degree of skepticism about the extent to which China’s relationship with U.S. commercial satellite makers has resulted in significant advances in its long-range military missile capabilities.”16
This applies to India as well. The technical fallacy is that the two NASA instruments will be fixed to one of the satellites. As Subrata Ghoshroy, a former analyst with the Government Accountability Office (GAO), has pointed out:
This type of concern is not new. Both India and China are manufacturing and launching satellites. So the basic integration and dispensing capabilities are there. In my opinion, detailed knowledge of the payloads would be difficult to obtain by ISRO engineers from simply launching something on the ISRO platform. The two NASA payloads for the Chandrayaan mission will be bolted to the satellite, not dispensed from it. It seems totally far fetched that such a mission would generate any information relevant to a MIRV design.17
Thus the concern that NASA’s engineers might transfer “tacit” knowledge in efforts to mate two lunar instruments with India’s PSLV, which would enable India’s space engineers to learn warhead-missile integration techniques, does not stand the test of technical evidence.
In the analysis to follow, we will explore why more substantive issues would help qualify the syllogistic and misleading argument that satellite integration would automatically lead to a MIRV capability.
Some media reports suggest India’s Defence Research and Development Organization (DRDO) has already initiated tentative efforts to develop a MIRV capability for India’s Agni-III intermediate range ballistic missiles. Note that the launch of India’s Chandrayaan moon mission that would carry two of NASA’s instruments isn’t scheduled until June or July of this year.18 This would pretty much refute the allegation that Indian engineers would spin off information from its civilian space sector to its missile program. Nevertheless, even if one were to dismiss this position as unverifiable and assert that the DRDO’s quest to develop MIRVs could still in some way be assisted through American transfers in the realm of civilian space cooperation, it does not square with the fact that several countries have launched their instruments and satellites from Indian boosters and that India has had the capacity to integrate and dispense multiple satellite payloads since 1999. The European Space Agency (ESA) is launching its own instruments aboard the same Indian Space Launch Vehicle (SLV) that would host NASA’s M3 and Mini-SAR instruments. Additionally, in 1999, the Indian Space Research Organization (ISRO) launched three satellite payloads, the IRS-P4, and two foreign microsatellites (the Korean KITSAT-3 and Germany’s TUBSAT) simultaneously on a single PSLV rocket.19 In May 2005, India launched the Cartosat-1 and Hamsat satellites from another version of the
PSLV. In January 2007, ISRO went one step further, simultaneously launching the satellites, India’s CARTOSAT-2, Indonesia’s LAPAN-TUBSAT and Argentina’s PEHUENSAT-1 and the Space Recovery Experiment-1 (SRE-1) Capsule.20 In April 2007, India registered its first successful commercial launch on a PSLV C8 – the 352-kilogram Italian satellite AGILE along with a non-commercial 185-kilogram craft known as the Advanced Avionics Module (AAM) in order to “test advanced launch vehicle avionics systems like mission computers, navigation and telemetry systems.”21 As recently as Jan. 28, 2008, the C10 version of the PSLV launched an Israeli spy satellite.22
ISRO’s multiple satellite launches in January 2007 did represent a key milestone in India’s space program. Engineers from ISRO used a four stage PSLV C7. For this launch, India also developed the Dual Launch Adapter (DLA) to launch and dispense four satellites.23 The Iridium satellite dispenser that triggered paranoia about technology transfer to China in the United States is similar to the DLA. The DLA launched two 500-650 kilogram spacecraft – the Cartosat 2 and the Space Recovery Capsule - and two other smaller satellites.
The fourth or final stage of the PSLV C7 is essentially the equivalent of the Post Boost Control System (PBCS) or the Tran- stage bus that the United States used for multiple satellite launches in the 1960s. To that extent, the PBCS and the PSLV’s final stage are a maneuvering platform. Note that the PSLV fourth stage engine is restartable,24 just as the PBCS had a restart capability. In the PSLV’s case, the fourth stage employs a 7.5-kilonewton pressure fed bi-propellant liquid engine with an impulse of 305 per second guiding the satellite payload to achieve orbital injection.25 Yet for upper stage technology, propulsive energy alone does not count in optimizing and calibrating injection accuracy. Rather, the key determinants are navigation sensors, the quality of navigation software, and the efficiency of the guidance and control system.26 The PSLV’s fourth stage in the January 2007 launch executed a complex set of maneuvers to place its payload precisely into their designated orbit. As ISRO scientists in one paper recently noted, “The orbital injection accuracies for the PSLV and GSLV…have been excellent.”27 This has been achieved through the consistent qualitative improvement in the Redundant Strap Down Inertial Navigation System (RESINS) which uses indigenously developed Dynamically Tuned Gyros (DTG) and Servo Accelerometers (SA).28 The SAs are high accuracy devices that enable precise payload injections.
In addition, the half-ton Space Recovery Experiment (SRE) capsule that India launched and recovered validated “(1) light weight reusable thermal protection system, (2) aero-thermal structure design/analysis, (3) hypersonic aerothermodynamics, (4) navigation, guidance and control of re-entry vehicle, (5) deceleration systems, (6) floating systems and recovery systems/operation, and (7) management of communication blackout.”29 The SRE was de-orbited after 12 days in space, during which time it conducted microgravity experimentation, provided valuable data on reusable launch vehicles, and helped scientists understand the requirements for India’s manned moon mission. Indian space managers recovered the capsule 165 kilometers off the southeast coast of India.
The successful recovery of the SRE certainly indicates the validation of at least a nascent re-entry vehicle capability pivotal to MIRV development. The SRE design seems to share some technical features to a few re-entry vehicles tested and used by the United States
CONTINUED