What's new

Indian Agni BM Technology origin

Indians have been barging about how indigenous indian missile technology is while Pak's is just copy of everything. Infact both india and pak have no indigenous missile technology. Without foreigner input both countries program are non existent.

Wisconsin Project on Nuclear Arms Control - Stopping Arms Proliferation at the Source

indianmissile.gif


Missile Helpers

India did not build its missiles alone. The world's leading rocket producers gave essential help in research, development, and manufacture.

France


* Licensed production of sounding rockets in India
* Supplied the liquid-fuel Viking rocket engine, now the "Vikas" engine of the PSLV second stage
* Tested Indian-produced Vikas engine in France

Germany

* Delivered measurement and calibration equipment to ISRO laboratories
* Trained Indians in high-altitude tests of rocket motors and in glass and carbon fiber composites for rocket engine housings, nozzles and nose cones
* Designed high-altitude rocket test facilities
* Conducted wind tunnel tests for SLV-3 rocket
* Developed radio frequency interferometer for rocket guidance
* Developed computers for rocket payload guidance based on U.S. microprocessor
* Supplied documentation for a filament-winding machine to make rocket engine nozzles and housings
* Helped build Vikas rocket engine test facilities
* Designed hypersonic wind tunnel and heat transfer facilities
* Supplied rocket motor segment rings for PSLV

Russia

* Supplied surface-to-air missiles which became the models for the Prithvi missile and the second stage of the Agni medium-range missile
* Sold seven cryogenic rocket engines

United Kingdom

* Supplied components for Imarat Research Center, home to the Agni missile
* Supplied magnetrons for radar guidance and detonation systems to Defense Research and Development Laboratory

United States

* Launched U.S.-built rockets from Thumba test range
* Trained Dr. Abdul Kalam, designer of the Agni
* Introduced India to the Scout rocket, the model for the SLV-3 rocket and the Agni first stage
* Sent technical reports on the Scout rocket to Homi Bhabha, the head of the Indian Atomic Energy Commission
* Sold equipment that can simulate vibrations on a warhead





The Link Between Space Launch and Missile Technology


Presentation by Gary Milhollin
at the
Asia-Pacific Center for Security Studies

Honolulu, Hawaii


March 16, 2000


Introduction - History

The nuclear and missile arms race in South Asia is getting a lot of attention since the test explosions in 1998. The history of missile development there illustrates the close connection between space launch and missile technology.

In 1963, NASA began the Indian rocket program. NASA launched a U.S. sounding rocket from India's first test range, which the United States helped design. We also trained the first groups of Indian rocket scientists. NASA invited them to NASA's Wallops Island test site located southeast of Washington, DC in Virginia.

While at NASA, Mr. A.P. Kalam, a member of the Indian delegation, learned about the U.S. Scout rocket, which was being flown at Wallops Island. The Scout was the only four-stage, solid-fueled, small payload space launcher in the world. Indian engineers saw the Scout's blueprints during their visit. Two years later, the head of India's Atomic Energy Commission asked NASA for design information about the Scout. Mr. Kalam then proceeded to build India's first big rocket, the SLV-3, which became the only other four-stage, solid-fueled, small payload space launcher in the world. It was an exact copy of the Scout. The first stage of the Scout then became the first stage of India's first large ballistic missile, the Agni-I. The Agni-I's second stage was liquid-fueled, and was based on a surface-to-air missile called the SA-2 that India bought from Russia.
France also helped India master liquid-fuel technology by selling India the technology used to build the "Viking" engine used on the Ariane space launcher. India calls its version the "Vikas." The Agni also needed a guidance system. The German Space Agency obliged with a long tutorial in rocket guidance, which allowed India to develop a guidance system and learn how to produce its components (gyroscopes, accelerometers and so forth). The German Space Agency also tested a model of the first stage of the SLV-3 in one of its wind tunnels in Cologne and helped India build its own rocket test facilities. Germany also trained Indians in how to make composite materials.

Thus, India's biggest nuclear-capable missile is an international product. Under the mantle of peaceful space cooperation, the United States, France and Germany all helped create the most advanced nuclear missile in South Asia.

The story in Pakistan is similar. NASA launched Pakistan's first rocket in 1962. Pakistan's project was also led by the head of Pakistan's Atomic Energy Commission. We must wonder what was going through NASA's mind at this time - it keeps getting requests for space cooperation from the heads of atomic energy commissions. Apparently NASA thought this was normal. NASA also trained Pakistani rocket scientists at Wallops Island, and launched rockets in Pakistan until 1970.

_________________________________


Testimony of Gary Milhollin

Professor, University of Wisconsin Law School and
Director, Wisconsin Project on Nuclear Arms Control

Before the House Committee on Science

June 25, 1998

I am pleased to appear today before this distinguished Committee. In accordance with the Committee's request, I will discuss the U.S. policy of cooperation with foreign space programs and the risk that this cooperation could contribute to the spread of missile technology.

Helping India and Pakistan

I would like to begin with a bit of history. There is an important lesson to be learned about the origin of India's largest nuclear-capable missile, the "Agni."

In November 1963, NASA began the Indian space program by launching a U.S. rocket from Indian soil. Between 1963 and 1975, more than 350 U.S., French, Soviet and British rockets were launched from India's new Thumba Range, which the United States helped design. Thumba's first group of Indian engineers learned rocket launching and range operation from the United States.

Among these engineers was A. P. J. Abdul Kalam, the Agni missile's chief designer. After the Indian nuclear tests last month, he was also hailed as the "father" of the Indian atomic bomb. In 1963-64, he spent four months in training in the United States. He visited NASA's Langley Research Center in Virginia, where the U.S. Scout rocket was conceived, and the Wallops Island Flight Center in Virginia, where the Scout was being flown. The Scout was a four-stage, solid-fueled launcher used to orbit small payloads. It was also used to test the performance of reentry vehicles--a technology necessary to deliver nuclear warheads. According to NASA officials, the Indian engineers saw the blueprints of the Scout during their visit.

In 1965, the Indian government asked NASA for design information about the Scout. The request should have raised some eyebrows. It came from the head of the Indian Atomic Energy Commission. Nevertheless, NASA obligingly supplied the information. Kalam then proceeded to build India's first big rocket, the SLV-3, which was an exact copy of the Scout. The first stage of the SLV-3 is now the first stage of the Agni missile.

The second stage of the Agni is based on a surface-to-air missile known as the SA-2 that India bought from Russia. But in order to build the second stage, India also had to learn about liquid propulsion. For this, India turned to France. The French willingly transferred the technology needed to build a powerful liquid-fueled rocket motor called the "Viking," which powers the European Space Agency's Ariane satellite launcher. Thus, India learned how to build the first stage of the Agni from the United States, and how to build the second stage from France and Russia. The U.S. and French help was supposed to be for peaceful space exploration, but it wound up helping India's missile program.

The Agni also needed a guidance system. For this, India turned to the German Space Agency. In the 1970s and 1980s, Germany conducted an intensive tutorial for India in rocket guidance. The assistance--once again--was supposed to be for peaceful space exploration. But each step in the process for building a guidance system for India's space launcher moved India further down the road to building a guidance system for the Agni missile. In fact, India seems to have invented a new term to describe its progress. Again and again, India's Department of Space, in its annual reports, announced that it was able to "indigenize" another piece of essential equipment.

Germany also provided other help. The German Space Agency tested a model of the first stage of the SLV-3 (identical to the Scout) in its wind tunnel at Cologne-Portz. That first stage is now the first stage of the Agni missile. The German Space Agency also helped India build rocket test facilities, and trained Indians in the use of the special composite materials needed to make rocket nozzles and nosecones. I have included a graphic and a table in my testimony that summarizes the extensive foreign help that India received.

Thus, India's biggest nuclear missile is an international product. Under the guise of peaceful space cooperation, the United States, France and Germany helped create the most advanced nuclear missile in South Asia. The Agni's first stage, second stage and guidance system all come from Western technology, which proves beyond any doubt that you cannot help a country build space launchers without helping it build missiles.

The story in Pakistan is similar. In 1962, NASA launched Pakistan's first rocket, a U.S. made Nike-Cajun, in a project led by Tariq Mustafa, the senior scientific officer of the Pakistan Atomic Energy Commission. NASA also trained Pakistani rocket scientists at Wallops Island. Other NASA-sponsored launches followed until 1970. Thus, the first rockets in both India and Pakistan were launched by NASA under a policy of peaceful space cooperation. The result of that cooperation, however, has been long-range missiles tipped with nuclear warheads.

_________________________________-
Basically the brain of SLV and Agni are "German" R&D and proliferated by India.

4534304949_ea3841ecaf_o.jpg

4534304331_964495db7a_o.jpg
Indians should throw light on this matter.
 
.
Indians should throw light on this matter.

Indian Missiles: Threat and Capability

January 1, 1995

As Indian scientists watched their new space rocket ascend over the Indian Ocean, they were jubilant. The rocket’s four giant stages lifted a three-quarter ton satellite into a near polar orbit, a tremendous achievement for Indian rocketry.

For the rest of the world, however, last October’s launch was more ominous: India had just proved that it could soon reach any point on the globe with a nuclear warhead.

India tested its first nuclear device in 1974. Since then, according to the CIA (Central Intelligence Agency), its researchers have progressed to working on more powerful thermonuclear bombs and the missiles to deliver them. India’s smallest nuclear-capable missile now threatens Pakistan, and its medium-range missile will threaten China’s border regions. If India converts its new space rocket to a missile, it could reach cities as far away as London, Tokyo and New York.

Whether India succeeds will depend on help from abroad. India has long claimed that it has a perfect right to run a space program, and India has never promised not to make nuclear-capable missiles. India is not seen as a “rogue country.” Yet, India has consistently used foreign help to convert its space rockets to nuclear-capable missiles. Imports, some clandestine, some overt, have nourished India’s nuclear and rocket efforts from the start.

India built the medium-range Agni missile by taking a first-stage rocket from a small space launcher and combining it with guidance technology developed by the German space agency. The effort dates from the 1960s. U.S. scientists from NASA (National Aeronautics and Space Administration) launched the first small rocket from Indian soil – an American Nike Apache – in 1963. “We were waiting for the payload to arrive when we saw a guy on a bicycle coming up an unpaved road,” recalls one NASA veteran of the launch. “He had the payload in the basket.”

From this humble beginning, the United States, Britain, France and Russia launched more than 350 small rockets over the next twelve years, all from India’s new Thumba test range, which these countries helped build and equip. It was through this early training that India learned the solid fuel technology that later wound up in the first stage of the Agni missile.

One of India’s ablest students was A. P. J. Abdul Kalam. While training in the United States, he visited the space centers where the U.S. Scout rocket was conceived and was being flown. Kalam returned home to build India’s first space rocket, the Satellite Launch Vehicle – SLV-3, a carbon copy of the Scout. NASA made Kalam’s task easier by supplying unclassified technical reports on the Scout’s design.

France supplied the next technology infusion. In the 1970s, its Societe Europeene de Propulsion gave India the technology for the Viking high-thrust liquid rocket motor, used on the European Space Agency’s Ariane satellite launcher. The Indian version, the “Vikas,” became the second stage of the large rocket India launched in October. Liquid fuel technology also helped India develop the Prithvi missile, which can reach Islamabad. Derived from a Soviet-supplied anti-aircraft missile, the Prithvi became the second stage of the Agni missile.

But aid from America and France was soon dwarfed by aid from Germany. In the late 1970s and throughout the 1980s, Germany helped India with three indispensable missile technologies: guidance, rocket-testing and composite materials. Earmarked for the space program, all were equally useful for building missiles.

In 1978, Germany installed an interfero-meter on an Indian rocket to measure, from the ground, a rocket’s angle of flight. Four years later, India tested its own version. From 1982 to 1989, Germany helped India build a navigation system for satellites based on a Motorola microprocessor. During the same period, and following the same steps, India developed its own navigation system for missiles and rockets based on the same microprocessor.

Germany also tested India’s first large rocket in a wind tunnel at Cologne-Portz; it helped India build its own rocket test facility; and it trained Indians in glass and carbon fiber composites at Stuttgart and Braunschweig. These lightweight, heat-resistant fibers are ideal for missile nozzles and nose cones. To help India use the fibers, Germany provided the documentation for a precision filament winding machine, a sensitive item now controlled for export by other countries, including the United States.

India’s quest for imports provoked a row with the United States in 1992. The Russian space agency tried to sell India advanced cryogenic engines for India’s most ambitious space rocket, the Geosynchronous Satellite Launch Vehicle (GSLV). The United States opposed the deal, rejecting India’s argument that the engines were only suitable for space launchers. “If you can do space launches, you can do ballistic missiles,” a Commerce Department analyst told the Risk Report. The analyst’s stance is buttressed by a CIA report declassified in 1993. It said that a space launcher “could be converted relatively quickly by technologically advanced countries … to a surface to surface missile.”

In 1993, India’s procurement effort surfaced again. A Massachusetts company was charged with violating U.S. export laws by selling India components for a hot isostatic press. The press, which India obtained through the company’s Scottish subsidiary, can be used to shape advanced composites for missile nose cones.

The question now is what India will do next. If it perfects a lightweight nuclear warhead, which the CIA says it is working on, the Agni missile could carry bombs to Beijing. And if India perfects an accurate long-range guidance system, its new space rocket could become an intercontinental ballistic missile. Success would change the strategic equation in Asia and make India a world nuclear power.

But India still needs crucial help. A recent Pentagon study cites composites, electronics, computers, sensors and navigation equipment as some of the technologies in which India is still weak.

http://www.wisconsinproject.org/indian-missiles-threat-and-capability/
 
.

Pakistan Affairs Latest Posts

Back
Top Bottom