Difficult. SL has thorium reserves. Makes more sense to go in for Thorium reactors. And the future of nuclear energy as visualised today is Thorium.
India’s nuclear developers have designed an Advanced Heavy Water Reactor (AHWR) specifically as a means for ‘burning’ thorium – this will be the final phase of their three-phase nuclear energy infrastructure plan (see below). The reactor will operate with a power of 300 MWe using thorium-plutonium or thorium-U-233 seed fuel in mixed oxide form. It is heavy water moderated (& light water cooled) and will eventually be capable of self-sustaining U-233 production. In each assembly 30 of the fuel pins will be Th-U-233 oxide, arranged in concentric rings. About 75% of the power will come from the thorium. Construction of the pilot AHWR is envisaged in the 12th plan period to 2017, for operation about 2022.
For export, India has also designed an AHWR300-LEU which uses low-enriched uranium as well thorium in fuel, dispensing with plutonium input. About 39% of the power will come from thorium .
Read this also
NEI Nuclear Notes: Sri Lanka Takes a Look at Thorium