imran iqbal
BANNED
- Joined
- Mar 2, 2010
- Messages
- 218
- Reaction score
- 0
U.S. NATIONAL SECURITY AND THE PEOPLE'S REPUBLIC OF CHINA -- CHAPTER 4
THE INFAMOUS INDIGENOUS TECH BY INFAMOUS MAN
The Soviet Union's Contribution to the PLA's Ballistic Missile Force
The Role of Qian Xuesen in the Development Of the PRC's Ballistic Missile and Space Programs
Stolen U.S. Technology Used on PRC Ballistic Missiles
The PRC's Indigenous Ballistic Missile Design Capabilities
The PRC's Use of Foreign Components on Communications Satellites
The PRC's Reliance on Western Communications Satellites
THE INFAMOUS INDIGENOUS TECH BY INFAMOUS MAN
Since its beginning, the PRC's ballistic missile and space program has received considerable foreign expertise and technology. This support has helped the PRC become a major ballistic missile and space power. The PRC has received considerable assistance from Russia (and previously from the Soviet Union) and the United States, as well as from other nations such as France and Germany.
From 1956 to 1960, the Soviet Union was the major supplier of ballistic missile technology and knowledge to the PRC. The Sino-Soviet split in 1960 ended this cooperation. Today, however, Russia is a major supplier of space launch technology to the PRC.
Technology and knowledge acquired from the United States has also assisted the PRC's missile and space programs, although this assistance was never officially sanctioned. Qian Xuesen was a Chinese citizen who was trained in the United States and who worked on classified programs including the Titan ICBM program. After being accused of spying for the PRC in the 1950s, Qian was permitted to return to the PRC, where he became the "father" of the PRC's ballistic missile and space programs. The illegal acquisition of U.S. technology for the PLA's ballistic missiles and space programs has continued aggressively during the past two decades, up to the present day.
The PRC has stolen design information on the United States' most advanced thermonuclear weapons, elements of which could be emulated by the PRC in its next generation ICBMs.
The PRC has stolen U.S. missile guidance technology that has direct applicability to the PLA's ballistic missiles.
Assistance from U.S. companies has improved the reliability of the PRC's military and civilian rockets, and the transfer of some of these improvements to its ballistic missiles is possible.
Western nations, including the United States, Germany, and France, have provided significant support to the PRC's satellite programs. German companies provide the communications package for the PRC's DFH-3 communications satellites. U.S.-manufactured radiation-hardened chips are also used on the PRC's meteorological satellites, used for both military and civilian purposes, to increase the on-orbit life of the satellites.
The Soviet Union's Contribution to the PLA's Ballistic Missile Force
The PRC received its first ballistic missiles in 1956, with the acquisition of two Soviet R-1 missiles. These were copies of the German cryogenic liquid-propellant V-2 missiles used in World War II. The PRC quickly acquired more advanced missiles in the form of the R-2 in 1957. The R-2 had considerable technical improvements over the R-1, including a greater range and a larger payload, as well as the use of storable liquid propellants.
In addition to the ballistic missiles themselves, the Soviet Union provided the PRC with blueprints for the R-2 missiles, and with advisors to assist in the PRC's development of a copy of the R-2. With this Soviet technical assistance, the PRC was able to produce and deploy these missiles.
During this period, PRC engineers and students received training at the Moscow Aviation Institute (MAI). While at MAI, these students were trained in aeronautical engineering, and acquired experience with more advanced Soviet missiles such as the SS-3 and the SS-4. In many instances, the information gained about more advanced Soviet missiles came when the students made copies of restricted notes, and quizzed their professors about the Soviet missiles.
In 1960, the Sino-Soviet split ended all cooperation, including missile cooperation, between the PRC and the Soviet Union. This left the PRC to continue its missile programs on its own, using the know-how it had gained from the Soviet Union, and the expertise of its American-trained scientists.
The Role of Qian Xuesen in the Development Of the PRC's Ballistic Missile and Space Programs
The PRC's ballistic missile and space programs received substantial assistance during their early development from Qian Xuesen (also known as Tsien Hsue-Shen), a Chinese citizen who was trained in the United States and had worked on classified U.S. missile programs, including the Titan intercontinental ballistic missile program.
Qian Xuesen became instrumental in the PRC's ballistic missiles program, where he is known as the "father of China's ballistic missile force." A biography of Qian published in the PRC states that he "made significant contributions to the rapid development of Chinese rockets [and] missiles, as well as space flight."
While at the Guggenheim Aeronautical Laboratory he made "pioneering contributions" to aviation engineering theory in the areas of supersonic and transonic aerodynamics, as well as thin shell stability theory for ballistic missile structures
Based on his rocket work at Cal Tech, Qian was recruited to join the U.S. Army Air Force in the development of its long-range missile programs.6 Commissioned a Colonel in the U.S. Army Air Force,7 he eventually began working on the Titan intercontinental ballistic missile.8
During the 1950s, allegations arose that Qian was spying for the PRC. 9 He lost his security clearances and was removed from work on U.S. ballistic missiles. 10 The allegations that he was spying for the PRC are presumed to be true.
Qian was invited back to the PRC and, after negotiations between the U.S. Government and the PRC, Qian was allowed to return to the PRC in 1955. Four other Chinese members of Qian's Titan design team also returned with him to the PRC.11 There were additional allegations that Qian attempted to ship classified documents to the PRC before he left in 1955.12
Once back in the PRC, Qian became the leading figure in the PRC's ballistic missile effort.13 Qian and his associates were able to apply the knowledge they gained from working on U.S. ballistic missile programs to the PRC's ballistic missile programs.
Stolen U.S. Technology Used on PRC Ballistic Missiles
The PRC has stolen U.S. missile guidance technology that has direct applicability to the PLA's ballistic missiles and rockets. The stolen guidance technology is used on a variety of U.S. missiles and military aircraft:
· The 90-mile range U.S. Army Tactical Missile System
· The U.S. Navy's Stand-off Land Attack Missile-Extended Range (SLAM-ER)
· The U.S. Navy F-14 fighter jet
· The U.S. Air Force F-15 fighter jet
· The U.S. Air Force F-16 fighter jet
· The U.S. Air Force F-117 fighter jet
The PRC's Indigenous Ballistic Missile Design Capabilities
The PRC is judged to have a fairly sophisticated capability to design ballistic missiles and rockets. This assessment is based on the fact that the PRC is able to develop missiles and rockets that are capable of delivering large payloads to their intended destination with reasonable accuracy and reliability. However, these design capabilities are not in all cases as sophisticated as those of Western nations.
The Select Committee's independent technical expert noted that while PRC scientists and engineers may have a textbook understanding of problems, there is a difference between a textbook understanding and the application of this knowledge to specific problems. Interactions with U.S. and foreign scientists and engineers, therefor, could assist the PRC engineers and scientists in overcoming these limitations.
The PRC's Use of Foreign Components on Communications Satellites
The PRC's limited communications satellite construction capabilities led it from the first to seek Western manufacturers for reliable components. Even the PRC's most modern communications satellite, the DFH-3, which was first successfully launched in 1997, contains a large number of Western components:
· The DFH-3 is reported to use a control processor built by Matra-Marconi75
· Messerschmitt Boelkow Blohm (MBB) provided the DFH-3 solar panel substrates to the China Academy of Space Technology (CAST), and CAST-produced solar cells were mounted on them. The solar panel assemblies were then returned to MBB for assembly into deployable solar arrays76
· Daimler Chrysler Aerospace Group provided the DFH-3's antenna assembly, consisting of a deployable dual gridded reflector, feed and interconnecting structure77
· Officine Galileo provided the Infrared Earth sensor to determine pitch/roll in geosynchronous orbit78
· The DFH-3's payload test equipment, according to 1993 reports, consisted of five racks and consoles with 80% U.S. (Hewlett Packard) and German equipment
· The equipment racks for the test equipment were provided by Germany's Ant Corporation
Several U.S. companies have also marketed their communications satellite technologies to the PRC. Loral, for example, offered the PRC a direct broadcast satellite (DBS) capability in 1996 using either a Loral-produced satellite bus or the DFH-3 series satellite bus.80 A 1995 Memorandum of Agreement between Loral and China Aerospace Corporation offered the PRC direct broadcast satellites, regional mobile satellite services systems, and the joint development of an advanced high capacity communications satellite. Under this agreement, Loral would provide design and technical support, while the final integration of the satellite was to have occurred in Germany or the PRC.81
Hughes and Loral competed for the Asia-Pacific Mobile Telecommunications (APMT) satellite, and Hughes was awarded the contract. APMT is a Singapore-based, PRC-controlled consortium.
The PRC's Reliance on Western Communications Satellites
Due to the failures of the PRC's rockets, and of its satellites, the PRC has become dependent on Western-manufactured communications satellites.
The PRC's dependency began as the early DFH-2A satellites reached the end of their on-orbit lives, while the fourth DFH-2A satellite failed to reach orbit. This created a gap in the PRC's satellite communications capabilities. As a result, the PRC was forced to look to foreign communications satellite manufacturers for supplemental capacity.
In December 1992, the PRC purchased Spacenet 1 on-orbit from GTE to replace its aging DFH-2A/1 and DFH-2A/2 satellites. The PRC renamed it "ChinaSat-5." This satellite was to provide supplemental capabilities until the PRC's first DFH-3 satellite was launched in 1994.
The failure of the PRC's first DFH-3 satellite to reach orbit, and the imminent expiration of the useful life of ChinaSat-5, forced the PRC to purchase a Hughes HS-376 satellite to provide additional communications channels. But this satellite launch in August 1996, aboard a Long March 3 rocket, was also a failure. The third stage left the satellite stranded in an unusable orbit.83
The second DFH-3 satellite that the PRC launched in May 1997 reportedly has now developed on-orbit problems.84
These failures have left the PRC dependent on Western-manufactured satellites, which it purchases through multinational consortia in which the PRC maintains a controlling interest. These include the Asia Pacific Satellite Telecommunications Co., and China Orient Telecomm Satellite Co, Ltd. Satellites acquired by the PRC in this way include the Apstar-1, Apstar-1A, Apstar-2R, and ChinaStar-1.
It is likely that these failures have made the PLA dependent on Western communications satellites as well.