Major Shaitan Singh
SENIOR MEMBER
- Joined
- Dec 7, 2010
- Messages
- 3,550
- Reaction score
- 43
- Country
- Location
Introduction
The Almaz S-400 Triumf or SA-21 system is the most recent evolution of the S-300P family of SAM systems, initially trialled in 1999. The label S-400 is essentially marketing, since the system was previously reported under the speculative label of S-300PMU3. At least one report claims that funding for the development of the Triumf was provided in part by the PLA. The principal distinctions between the S-400 and its predecessor lie in further refinements to the radars and software, and the addition of four new missile types in addition to the legacy 48N6E/48N6E2 used in the S-300PMU2 Favorit.
A 2008 diagram published by Almaz-Antey showing the composition of an S-400 battery. Notable points include the integration of external low band NNIIRT Protivnik GE and VNIIRT Gamma DE L-band radars, and a range of passive emitter locating systems. All have the angular accuracy to provide midcourse guidance updates for missile shots.
As a result an S-400 battery could be armed with arbitrary mixes of these weapons to optimise its capability for a specific threat environment. The 30N6E2 further evolved into the more capable 92N6E Grave Stone, carried by a new 8 x 8 MZKT-7930 vehicle. The additional range required a significantly uprated transmitter tube to provide the higher power-aperture performance needed, in additional to an improved exciter and automatic frequency hopping capability. The 96L6 is offered as an 'all altitude' battery acquisition radar, also carried by a 8 x 8 MZKT-7930 vehicle. A new 3D phased array acquisition radar is employed, the 91N6E derived from the 64N6E2, and the 40V6M/MD mast is an available option. The 55K6E command post is employed, carried by an 8 x 8 Ural 532361 truck.
Optional acquisition radars cited for the S-400 include the 59N6 Protivnik GE and 67N6 Gamma DE in the L-band, but also the 1L119 Nebo SVU in the VHF band, and the multiband Nebo M. The Nebo SVU/M have a claimed capability against stealth aircraft. In addition to further acquisition radar types, the S-400 has been trialled with the Topaz Kolchuga M, KRTP-91 Tamara / Trash Can, and 85V6 Orion / Vega emitter locating systems, the aim being to engage emitting targets without emitting from the acquisition radars, or if the acquisition radars have been jammed. In June, 2008, the manufacturer disclosed the integration of the 1RL220VE, 1L222 and 86V6 Orion emitter locating systems with the S-400.
TEL options include the baseline 5P85TE2 semitrailer, towed by a 6 x 6 BAZ-64022, the improved 5P90S self-propelled TEL hosted on the BAZ-6909-022 and intended to carry a heavier missile payload than the legacy MAZ-79100 series TELs, and a new heavyweight towed TEL to be designated the 5P90TMU.
Imagery of the 5P90S self-propelled TEL shows a new gantry design, a new elevating folding mast with a directional antenna, and a state-of-the-art NK Orientir precision navigation system, with an increased baseline for the satnav antennas, compared to the installation on the S-300PMU2 vehicles.
Long term planning is to host all S-400 battery components on BAZ Voschina series vehicles, with the 92N6 Grave Stone and 96L6-1 carried on the 10 x 10 BAZ-69096 chassis, and a new BAZ-6403.01 8 x 8 tractor is to be used to tow the 91N6 Big Bird battle management radar, and 40V6M/T series mobile mast systems. The 55K6E battery command post will be hosted on the BAZ-69092-012 6 x 6 chassis, a flatbed variant of which will be used to tow the 63T6A power converter and 5I57A power generator. The 8 x 8 BAZ-69096 chassis is also intended for future use in the 96K6 Pantsir S1 / SA-22 SPAAGM.
1. Unfortunately it lacks the detail of later Almaz-Antey disclosures on the S-300PMU2 Favorit, but does provide a good discussion of the rationale behind the S-400 design design, and its key design features.
Lemanskiy et al state that definition of the S-400 design was performed jointly by the designers and the Russian MoD, with specific capability foci in:
Export variants of the S-400 Triumf are intended to destroy opposing stand-off jammer aircraft, AWACS/AEW&C aircraft, reconnaissance and armed reconnaissance aircraft, cruise missile armed strategic bombers, cruise missiles, Tactical, Theatre and Intermediate Range Ballistic Missiles, and any other atmospheric threats, all in an intensive Electronic Counter Measures environment.
Lemanskiy et al describe the system composition as four core components:
The design permits all equipment vans to be separated from the vehicle chassis for installation and operation in hardened shelters.
The 55K6E is employed to control all components in the group of batteries, and can collect and present status information from all components. It can also control the operating modes of the 91N6E Big Bird acquisition and battle management radar, including its IFF/SSR functions. A comprehensive C3 /datalink package is installed, and an Elbrus-90 mikro central processor is used to execute the dataprocessing and system management code. Sharing hardware with the S-300PMU2 54K6E 2 CP, the 55K6E uses 18 inch LCD panels for all crew stations.
Five common consoles are installed, with unique software driven presentation for the five person crew of the CP, the latter comprising:
The 92N6E departs from the specialised engagement and fire control functionality of earlier radars in the Flap Lid family, exploiting abundant computing power no differently than Western AESAs. It is intended to provide autonomous manual and automatic sector searchs, target acquisition and tracking, in adverse weather, Electronic Counter Measures, chaff and low altitude clutter environments. The radar is equipped with an IFF capability.
The 92N6E Grave Stone will automatically prioritise targets, compute Launch Acceptable Regions for missile launches, launch missiles, capture missiles, and provide midcourse guidance commands to missiles while tracking the target and missile. Missile guidance modes include pure command link, semi-active homing, and Track via Missile (TVM) / Seeker Aided Ground Guidance (SAGG), where missile semi-active seeker outputs are downlinked to the Grave Stone to support the computation of missile uplink steering commands.
The radar can track 100 targets in Track While Scan mode, and perform precision tracking of six targets concurrently for missile engagements. data exchanges between the 92N6E Grave Stone and 30K6E battle management system are fully automatic.
The 92N6E Grave Stone data processing subsystem is designed around the Elbrus-90 mikro SPARC multiprocessor system, like the S-300PMU2 30N6E2 Tomb Stone variant. Computing power is exploited to support a diverse range of modes and waveforms. These including:
Lemanskiy et al described the 48N6E3 missile in some detail, but did not include any disclosures beyond what is already public knowledge.
The authors did state that increased radar power-aperture product performance in both the 92N6E Grave Stone and 91N6E Big Bird increases the capability of the S-400 Triumf to engage low signature or stealth targets, but their cryptic claim of 50 percent of the engagement range remains difficult to interpret.
What is evident is that the fully digital S-400 Triumf displays most if not all of the typical capability gains seen in the latest generation of fully digital systems of Western design.
48N6E3 SAM Cutaway. Note the TVC vanes in the exhaust nozzle. The seeker is labelled as 'semi-active radar' (Almaz-Antey)
Fakel 48N6E3 and 40N6 Surface to Air Missiles
The first missile added to the system is the 48N6E3/48N6DM (Dal'naya - long range), an incrementally improved 48N6E2 variant with a range of 130 nautical miles. It is deployed using the standard TEL, the 5P85TE2/SE2.
The second missile added to the S-400 is the new 40N6, a long range weapon with a cited range of 215 nautical miles, equipped with an active and semi-active homing seeker, intended to kill AWACS, JSTARS and other high value assets, such as EA-6B/EA-18G support jammers. Further details of this weapon remain to be disclosed. The range improvement to around twice that of the 48N6E2 suggests a two stage weapon, or a much larger motor casing with a larger propellant load. Russian media reports citing PVO senior officers in 2010 indicated that 40N6 range may be a great as 240 nautical miles, and the missile completed State Trials (Russian OpEval) in 2010, and was to enter production. To date no images of the 40N6 missile, launcher container or TEL have been made public.
S-400 48N6E2/E3 SAM specifications.
Extended range missile shots typically involve ballistic flight profiles with apogees in excess of 40 km. The protracted development of the 40N6 suggests that directional control through the upper portions of the flight profile may have presented difficulties. One advantage of such flight profiles is that the missile converts potential energy into kinetic energy during the terminal phase of its flight, accelerating as it dives on its target. This provides higher endgame G capability in comparison with flatter cruise profiles used in legacy designs.
The Almaz S-400 Triumf or SA-21 system is the most recent evolution of the S-300P family of SAM systems, initially trialled in 1999. The label S-400 is essentially marketing, since the system was previously reported under the speculative label of S-300PMU3. At least one report claims that funding for the development of the Triumf was provided in part by the PLA. The principal distinctions between the S-400 and its predecessor lie in further refinements to the radars and software, and the addition of four new missile types in addition to the legacy 48N6E/48N6E2 used in the S-300PMU2 Favorit.
A 2008 diagram published by Almaz-Antey showing the composition of an S-400 battery. Notable points include the integration of external low band NNIIRT Protivnik GE and VNIIRT Gamma DE L-band radars, and a range of passive emitter locating systems. All have the angular accuracy to provide midcourse guidance updates for missile shots.
As a result an S-400 battery could be armed with arbitrary mixes of these weapons to optimise its capability for a specific threat environment. The 30N6E2 further evolved into the more capable 92N6E Grave Stone, carried by a new 8 x 8 MZKT-7930 vehicle. The additional range required a significantly uprated transmitter tube to provide the higher power-aperture performance needed, in additional to an improved exciter and automatic frequency hopping capability. The 96L6 is offered as an 'all altitude' battery acquisition radar, also carried by a 8 x 8 MZKT-7930 vehicle. A new 3D phased array acquisition radar is employed, the 91N6E derived from the 64N6E2, and the 40V6M/MD mast is an available option. The 55K6E command post is employed, carried by an 8 x 8 Ural 532361 truck.
Optional acquisition radars cited for the S-400 include the 59N6 Protivnik GE and 67N6 Gamma DE in the L-band, but also the 1L119 Nebo SVU in the VHF band, and the multiband Nebo M. The Nebo SVU/M have a claimed capability against stealth aircraft. In addition to further acquisition radar types, the S-400 has been trialled with the Topaz Kolchuga M, KRTP-91 Tamara / Trash Can, and 85V6 Orion / Vega emitter locating systems, the aim being to engage emitting targets without emitting from the acquisition radars, or if the acquisition radars have been jammed. In June, 2008, the manufacturer disclosed the integration of the 1RL220VE, 1L222 and 86V6 Orion emitter locating systems with the S-400.
TEL options include the baseline 5P85TE2 semitrailer, towed by a 6 x 6 BAZ-64022, the improved 5P90S self-propelled TEL hosted on the BAZ-6909-022 and intended to carry a heavier missile payload than the legacy MAZ-79100 series TELs, and a new heavyweight towed TEL to be designated the 5P90TMU.
Imagery of the 5P90S self-propelled TEL shows a new gantry design, a new elevating folding mast with a directional antenna, and a state-of-the-art NK Orientir precision navigation system, with an increased baseline for the satnav antennas, compared to the installation on the S-300PMU2 vehicles.
Long term planning is to host all S-400 battery components on BAZ Voschina series vehicles, with the 92N6 Grave Stone and 96L6-1 carried on the 10 x 10 BAZ-69096 chassis, and a new BAZ-6403.01 8 x 8 tractor is to be used to tow the 91N6 Big Bird battle management radar, and 40V6M/T series mobile mast systems. The 55K6E battery command post will be hosted on the BAZ-69092-012 6 x 6 chassis, a flatbed variant of which will be used to tow the 63T6A power converter and 5I57A power generator. The 8 x 8 BAZ-69096 chassis is also intended for future use in the 96K6 Pantsir S1 / SA-22 SPAAGM.
1. Unfortunately it lacks the detail of later Almaz-Antey disclosures on the S-300PMU2 Favorit, but does provide a good discussion of the rationale behind the S-400 design design, and its key design features.
Lemanskiy et al state that definition of the S-400 design was performed jointly by the designers and the Russian MoD, with specific capability foci in:
- Defeating threats at low and very low flight altitudes;
- Dealing with the overall reduction of target signatures resulting from the pervasive use of stealth technology;
- Dealing with the increase in target quantities resulting from the widspread use of UAVs;
- Applying all means to defeat advanced jammers employed by opponents;
- Surviving in an environment where PGMs are used widely;
- Accommodating an environment where an increasing number of nations are deploying TBMs and IRBMs.
- An open system architecture with a high level of modularity, intended to permit follow-on capability growth in the design;
- Multirole capabilities and the capacity for integration with legacy IADS technologies;
- Suitability for the air defence of fixed infrastructure targets, as well as manoeuvre forces;
- Suitability for integration with naval surface combatants;
- The ability to exploit legacy missile rounds already in operational use;
- High operational mobility and deployability;
- High lethality and jam resistance;
Export variants of the S-400 Triumf are intended to destroy opposing stand-off jammer aircraft, AWACS/AEW&C aircraft, reconnaissance and armed reconnaissance aircraft, cruise missile armed strategic bombers, cruise missiles, Tactical, Theatre and Intermediate Range Ballistic Missiles, and any other atmospheric threats, all in an intensive Electronic Counter Measures environment.
Lemanskiy et al describe the system composition as four core components:
- The 30K6E battle management system, comprising the 55K6E Command Post and 91N6E Big Bird acquisition radar;
- Up to six 98Zh6E Fire Units, each comprising a 92N6E Grave Stone “multimode” engagement radar, up to twelve 5P85SE2 / 5P85TE2 TELs, each TEL armed with up to four 48N6E2/E3 missiles;
- A complement of SAM rounds, comprising arbitrary mixes of the 48N6E, 48N6E2 and 48N6E3;
- The 30Ts6E logistical support system, comprising missile storage, test and maintenance equipments.
The design permits all equipment vans to be separated from the vehicle chassis for installation and operation in hardened shelters.
The 55K6E is employed to control all components in the group of batteries, and can collect and present status information from all components. It can also control the operating modes of the 91N6E Big Bird acquisition and battle management radar, including its IFF/SSR functions. A comprehensive C3 /datalink package is installed, and an Elbrus-90 mikro central processor is used to execute the dataprocessing and system management code. Sharing hardware with the S-300PMU2 54K6E 2 CP, the 55K6E uses 18 inch LCD panels for all crew stations.
Five common consoles are installed, with unique software driven presentation for the five person crew of the CP, the latter comprising:
- 1 x Air Defence Unit Commander
- 1 x Air Situation Management Officer
- 2 x Fire Control Officers
- 1 x Engineering Officer
The 92N6E departs from the specialised engagement and fire control functionality of earlier radars in the Flap Lid family, exploiting abundant computing power no differently than Western AESAs. It is intended to provide autonomous manual and automatic sector searchs, target acquisition and tracking, in adverse weather, Electronic Counter Measures, chaff and low altitude clutter environments. The radar is equipped with an IFF capability.
The 92N6E Grave Stone will automatically prioritise targets, compute Launch Acceptable Regions for missile launches, launch missiles, capture missiles, and provide midcourse guidance commands to missiles while tracking the target and missile. Missile guidance modes include pure command link, semi-active homing, and Track via Missile (TVM) / Seeker Aided Ground Guidance (SAGG), where missile semi-active seeker outputs are downlinked to the Grave Stone to support the computation of missile uplink steering commands.
The radar can track 100 targets in Track While Scan mode, and perform precision tracking of six targets concurrently for missile engagements. data exchanges between the 92N6E Grave Stone and 30K6E battle management system are fully automatic.
The 92N6E Grave Stone data processing subsystem is designed around the Elbrus-90 mikro SPARC multiprocessor system, like the S-300PMU2 30N6E2 Tomb Stone variant. Computing power is exploited to support a diverse range of modes and waveforms. These including:
- Sniffing waveforms at varying power levels to establish the presence of interfering emitters at a given angle and frequency;
- Adaptive beam control reflecting immediate operational conditions;
- Variable PRFs and scan rates for missile and target tracking;
- Defeat of high power active noise jammers by the use of “radical measures” in the design.
Lemanskiy et al described the 48N6E3 missile in some detail, but did not include any disclosures beyond what is already public knowledge.
The authors did state that increased radar power-aperture product performance in both the 92N6E Grave Stone and 91N6E Big Bird increases the capability of the S-400 Triumf to engage low signature or stealth targets, but their cryptic claim of 50 percent of the engagement range remains difficult to interpret.
What is evident is that the fully digital S-400 Triumf displays most if not all of the typical capability gains seen in the latest generation of fully digital systems of Western design.
48N6E3 SAM Cutaway. Note the TVC vanes in the exhaust nozzle. The seeker is labelled as 'semi-active radar' (Almaz-Antey)
Fakel 48N6E3 and 40N6 Surface to Air Missiles
The first missile added to the system is the 48N6E3/48N6DM (Dal'naya - long range), an incrementally improved 48N6E2 variant with a range of 130 nautical miles. It is deployed using the standard TEL, the 5P85TE2/SE2.
The second missile added to the S-400 is the new 40N6, a long range weapon with a cited range of 215 nautical miles, equipped with an active and semi-active homing seeker, intended to kill AWACS, JSTARS and other high value assets, such as EA-6B/EA-18G support jammers. Further details of this weapon remain to be disclosed. The range improvement to around twice that of the 48N6E2 suggests a two stage weapon, or a much larger motor casing with a larger propellant load. Russian media reports citing PVO senior officers in 2010 indicated that 40N6 range may be a great as 240 nautical miles, and the missile completed State Trials (Russian OpEval) in 2010, and was to enter production. To date no images of the 40N6 missile, launcher container or TEL have been made public.
S-400 48N6E2/E3 SAM specifications.
Extended range missile shots typically involve ballistic flight profiles with apogees in excess of 40 km. The protracted development of the 40N6 suggests that directional control through the upper portions of the flight profile may have presented difficulties. One advantage of such flight profiles is that the missile converts potential energy into kinetic energy during the terminal phase of its flight, accelerating as it dives on its target. This provides higher endgame G capability in comparison with flatter cruise profiles used in legacy designs.