JSCh
ELITE MEMBER
- Joined
- Jun 9, 2011
- Messages
- 13,235
- Reaction score
- 2
- Country
- Location
Yes, I would have expect that to be the case.Are they the first to come up with this idea?
Paper:
Hong Zhang, Xiaopei Qiu, Yurui Zou1, Yanyao Ye, Chao Qi, Lingyun Zou, Xiang Yang, Ke Yang, Yuanfeng Zhu, Yongjun Yang, Yang Zhou and Yang Luo. "A dye-assisted paper-based point-of-care assay for fast and reliable blood grouping". Science Translational Medicine (2017). DOI: 10.1126/scitranslmed.aaf9209
Finding the right type
Blood type matching is important for pregnancy, blood transfusion, and bone marrow transplantation. Zhang et al. developed a blood typing assay based on the color change that occurs when a common pH indicator dye reacts with blood. Red blood cells (RBCs) and plasma were separated from small volumes of whole, uncentrifuged blood samples using antibodies immobilized on paper test strips. The assays performed forward grouping (detecting A and/or B antigens on RBCs) and reverse grouping (monitoring the agglutination between RBCs and anti-A and/or anti-B antibodies in plasma) within 2 min and could also perform Rhesus and rare blood typing. A machine-learning algorithm grouped human blood samples automatically on the basis of spectral analysis of the colorimetric assay readouts. This economical and robust assay is useful for time- and resource-limited environments.
Abstract
Fast and simultaneous forward and reverse blood grouping has long remained elusive. Forward blood grouping detects antigens on red blood cells, whereas reverse grouping identifies specific antibodies present in plasma. We developed a paper-based assay using immobilized antibodies and bromocresol green dye for rapid and reliable blood grouping, where dye-assisted color changes corresponding to distinct blood components provide a visual readout. ABO antigens and five major Rhesus antigens could be detected within 30 s, and simultaneous forward and reverse ABO blood grouping using small volumes (100 μl) of whole blood was achieved within 2 min through on-chip plasma separation without centrifugation. A machine-learning method was developed to classify the spectral plots corresponding to dye-based color changes, which enabled reproducible automatic grouping. Using optimized operating parameters, the dye-assisted paper assay exhibited comparable accuracy and reproducibility to the classical gel-card assays in grouping 3550 human blood samples. When translated to the assembly line and low-cost manufacturing, the proposed approach may be developed into a cost-effective and robust universal blood-grouping platform.
*****###*****
A new test can detect your blood type with color-changing paper
It could be crucial in emergency situations and remote areas
By Claire Maldarelli posted Mar 15th, 2017 at 4:41pm
H. Zhang et al, Science Translational Medicine 2017
The paper turns teal or brown, depending on whether the right combination of antigens and antibodies are present.Knowing a person’s blood type is crucial in medicine. If a traumatic injury leaves you in need of a donor's blood, an infusion from the wrong blood type can result in a life-threatening reaction. But not everyone knows their blood type off the top of their head (I don’t, and I am a self-proclaimed hypochondriac). Blood typing is typically a lengthy process that requires a lab and all the equipment that comes with it. But in a report out this week in the journal Science Translational Medicine, researchers have come up with a better method: A paper-based test that identifies a person’s type with just a few drops of blood. They say this test could be most helpful in emergency and remote areas, where conventional blood typing isn’t feasible.
Traditional blood typing requires the use of a centrifuge, which spins the blood and separates it into its different components. Since most remote locations don’t have this type of equipment, the holy grail of blood type detection has been to design a process that doesn’t need a centrifuge.
The researchers worked around the need for a lab by finding a common dye—bromocresol green—that interacts with blood. What makes people have different blood types—A, B, AB, and O (as well as some other rare types)—is that each has different antigens and antibodies. Antigens are specialized proteins that sit on the outside of red blood cells, and antibodies are proteins that your body produces to fend off invaders. If a person has blood type A, they will have A-type antigens and B-type antibodies. The opposite is true for people with blood type A.
The device looks like a long thermometer with two ends. One the left end the user would place a solution containing antibody A and on the right end she would place a solution with antibody B. Then a drop of blood would be placed in the center, followed by a drop of the dye. The solution would travel down the paper and reach both antibody solutions. If the blood type was A, then the left solution—with a combination of antibody A, antigen A, and dye—would turn brown, and the right solution—with a combination of antibody B, antigen A, and dye—would turn teal. If the blood type were B, the left solution would be teal and the right solution would be brown. Type AB, in which both antigens are found on red blood cells, would turn both solutions teal, and type O, with no antigens at all, would turn both solutions brown.
The color change happens within 30 seconds, which is much faster than traditional testing which takes hours or days in a lab. The researchers tested 3,550 blood samples and had an accuracy rate of 99.9 percent. Further, because the result relies on a simple color change (which people who have red-green color blindness can also detect), it's easy for first responders or people in remote areas to use.
While the results seem promising, the work is still in its proof-of-concept stage. More testing is needed to ensure the test can hold up in a variety of settings. The researchers also want to expand its ability to identify rarer blood types, or ones where the interaction between the antigens and the antibodies isn’t as strong. The current test also can’t distinguish blood from other fluids, which could contain antigens that produce color changes. Nevertheless, if this test makes it out into the real world, it could be a game-changer for remote or point-of-care medicine.
A new test can detect your blood type with color-changing paper | Popular Science