What's new

Army Chief visits Italian Defence Factories

.
As Italian I can say that my country can provide all for an entire army or navy. We have Finmeccanica that is one of the word leader in military industries and dozen of other industries for naval/air and ground

I think that for radar system SELEX ES is the most advanced industry, Augusta-Westland provides attack and trasport helis for a lot of NATO countries and IVECO sells ground vehicles for all activities. One of you posted the Centauro that was used to create the Striker by US Defence company.

EDIT: And you guys also posted ARX 160 images. ARX is one of the best weapon atm, for weight, accuracy and features.


We already use many a Italian systems:

Cosmos Midget subs for special operations (Under ToT)
Beretta handguns and ARX
Thetis systems for AZ mbt
Spada 2000 SAM
FALCO UAV (under ToT)
Selex avionics and
systems(under ToT)
Westland helis
Griffo radars (tot)
APC's
Vixen AESA was also offered for JF-17.


I've seen Iveco trucks here aswell..

Etc etc..

Forgot about naval guns and other weapons ...
 
.
I am watching this on ARY. Seems like Italians are pretty impressed with PA.
 
. .
Yeah, that was long times ago. Just surveillance and monitoring. In my view, many drones without armed missiles are simply junks. Great news is Pakistan now has testing laser-guided missiles from Burq drones successfully, maybe next project is bigger than Falco hopefully.

Pakistan should decide to purchase something first and sign contracts immediately in Russia defence shopping before Italy and then Germany and then Australia and then South Africa etc without waiting and misunderstanding in our media conflicts news.
That's because you don't seem to get how drones are used. Surveillance drones without missiles are better for longer missions, as their durability tends to be higher, due to a lighter payload. Armed drones are meant for strike missions, and are a go in, come back out sort of drones, which don't have as high a durability.

There is a reason why even the US is still developing and using surveillance drones.

You also seem to not understand how defense procurement works.

I hate when people call something junk, when they clearly don't understand the purpose of said thing, like the guy who called Ukrainian technology junk, not knowing Pakistani tanks use Ukrainian engines.
 
.
Screen Shot 2015-07-28 at 01.41.59.png
Screen Shot 2015-07-28 at 01.42.10.png
Screen Shot 2015-07-28 at 01.42.21.png
 
. . . .
COAS is doing a lot but it seems like he's keeping many things secret. Perhaps some defence deals that are not yet revealed? None of us knew about the FM-90 until the military parade.
 
. .
Berreta ARX-100 review

Aster 30 SAMP/T – Surface-to-Air Missile Platform / Terrain



The Aster 30 SAMP/T (sol-air moyenne portée terrestre or surface-to-air medium range / land) is a land-based air defence system effective against high-speed threats such as tactical ballistic missiles, cruise missiles, combat aircraft and UCAVs (unmanned combat air vehicles). The missile system has been developed by Eurosam, jointly owned by MBDA Missile Systems and Thales.

Aster 30 SAMP/T air defence system development
The French Ministry of Defence has placed orders for six SAMP/T systems for the French Army and six systems for the French Air Force. Eurosam has received an order for six SAMP/T systems for the Italian Army.

Full-scale development of the Aster 30 missile and the SAMP/T started in 1990, with production engineering and initial volume production in 1997. Qualification firing trials began in 1999.

The first qualification trial involving the whole system took place in July 2005. The successful trial included target acquisition and tracking by the Arabel radar and interception of a C-22 target at an altitude of 7,000m and range of 26km. A second successful test took place in December 2005. The third and final test took place in November 2006 and involved interception of the target at altitude 3,000m and range 11km.

SAMP/T began operational evaluation with the French and Italian armies in May 2008 with two successful test firings.

"The Aster 30 SAMP/T (sol-air moyenne portée) is a land-based air defence system."
Operational acceptance tests were concluded with the Italian Army and French Air Force in July 2008. In December 2008, a successful firing test took place, incorporating software changes suggested by the technical evaluation, prior to the delivery of the first serial production system to the French Air Force. SAMP/T systems in French service were operational by 2010.

The SAMP/T intercepted its first ballistic target at the DGA missile launch test centre (CELM) in Biscarosse in October 2010. The missile systems are now in series production and being offered for the export market.

MBDA is developing the ASTER block 2 missile for the SAMP/T launcher, which will have longer range and, with different trajectories, will be effective against future ballistic missile threats.



Related Suppliers
ISO Group - Spare Parts, Components and Logistics for Military Vehicles and Land Equipment
ISO Group, headquartered in West Melbourne, Florida, is a world leader...

See all suppliers


SAMP/T surface-to-air missile battery
A typical SAMP/T battery includes a command and control vehicle, Arabel radar and up to six transporter erector launcher (TEL) vehicles, each with eight missiles and a store of reload missiles. The missile TEL vehicles are dispersed to launch sites located up to 10km from the Arabel radar.

The SAMP/T system uses MAGICS (modular architecture for graphics and image console systems) and MARA (modular architecture for real-time applications) computers.

The Arabel multi-function radar acquires and tracks the targets. The command system evaluates, prioritises and designates the targets. The data on primary and secondary targets is downloaded to the missile launchers and seeker and data link frequency channels are allocated.

The missile is launched and as it turns over in flight towards the target, the target's position and velocity data are transmitted via the uplink channel at one second intervals.

Arabel radar
The SAMP/T uses an upgraded version of the Arabel radar, with improved performance developed under the Aster 30 block 1 upgrade program, in order to extend the system's capability against higher speed targets and higher altitude targets. The SAMP/T system can intercept at 600km range (short range ballistic missile targets).

The Thales Arabel radar is a 3D phased array radar for surveillance, tracking and missile guidance. The rectangular, 4,000-element, phased array antenna rotates at one revolution a second. Arabel operates in the eight to 13GHz X band (I/J band) with 360° azimuthal and -5° to 90° elevation scanning.

The system can track up to 100 targets simultaneously and manage the uplink transmission of command update data to 16 missiles simultaneously. The standard Arabel radar operates at 150kW peak power and has a range of 100km.

The beam can be shaped to optimise the performance. The radar uses frequency agility and pulse compression ECCM (electronic counter-countermeasures) techniques.

"The successful Aster SAMP/T trial included target acquisition and tracking by the Arabel radar."
Land vehicle
For the French Army, the SAMP/T is mounted on a Renault 8x4 Kerax transporter erector launcher vehicle or a similar vehicle. Each vehicle is fitted with eight ready-to-fire missile containers and all eight missiles from a single launcher can be salvo-fired in under ten seconds.

The SAMP/T for the Italian Army will be mounted on Astra 8x8 transporter erector launcher trucks, each truck with eight missiles.

Aster 30 block 1 missiles
SAMP/T uses Aster 30 block 1 missiles which are equipped with a modified seeker, fuse, signal processing and a directional blast warhead where larger warhead fragments are directed towards the target.

The Aster 30 missile has a tandem first stage solid propellant booster motor which is jettisoned after launch and turn-over and before the mid-course phase. The first stage booster motor, developed by Fiat Avio, has length 2.3m, weight 340kg, burn time 3.5 seconds. It has two steerable nozzles to provide the missile with thrust vector control during the initial stage of flight.

After jettisoning the first stage booster motor, the second stage missile has a weight of 110kg, length of 2.6m and diameter of 18cm. The body of the missile carries four long rectangular wings and four blunt-tipped triangular control fins at the rear. The second stage missile is fitted with solid propellant sustainer motor. The sustainer motor efflux tube carries the uplink receiver and the fin actuators.

The missile uses inertial mid-course guidance, with guidance correction update data being transmitted from the ground-based fire control centre via the Arabel multifunction radar's uplink data channel. The Sagem Agyle inertial guidance unit is fitted with a Sistemi Inersiali inertial guidance reference system and a Sagem miniature laser gyroscope.

The missile uses 'pilotage en force' (PIF) fine-controlled side thrust exhaust for manoeuvrability in the final phase of flight just before intercept, to ensure that the missile is within 2m of the target when the warhead is detonated. The missile's PIF system comprises a solid propellant gas generator which exhausts through four lateral nozzles in the long rectangular wings at a point close to the missile's centre of gravity.

The missile does not role in the final phase of flight. The guidance control system commands the PIF system to exhaust through one or two nozzles generating a controlled sideways thrust pulling up to 60g acceleration.

The missile and the target approach each other on a reciprocal flight path. As the missile approaches the target in the terminal phase, the missile uses an active pulse Doppler radar seeker, a derivative of the AD4 seeker design which incorporates a high-power travelling wave tube transmitter and wide antenna deflection, to home in on the target.

"Aster 30 SAMP/T has the capability to intercept targets at altitudes from 50m to 20km."
The seeker is laid on the target using data transmitted via the ground to missile uplink. Once seeker lock-on has been conformed the missile operates autonomously. The modifications to the seeker include higher closing velocity capability, an adjustment to the duty cycle to increase the transmitted power, an additional high resolution range function, and modified target lock-on and tracking algorithms. The seeker has ECCM including home on jam and clutter suppression. The programmable J-band pulse Doppler AD4A radar seeker manufactured by Thales and Selex Sistemi Integrati, operates at 12GHz to 18GHz.

The missile, which weighs typically 100kg at target intercept, is fitted with a 15kg directional blast fragmentation warhead designed by Fiat Avio and MBDA. The warhead is fitted with a Ku-band proximity fuse, which generates a constant working pseudo random phase digital coded waveform. The warhead is loaded with two types of fragments, 4g and larger fragments, which are directed towards the target.

Performance
The maximum speed of Aster 30 is 1.4km/sec. Aster 30 has the capability to intercept targets at altitudes from 50m to 20km. Against aircraft targets flying at altitudes above 3km, the maximum range of the Aster 30 is 100km. At aircraft targets with altitudes below 3km, the range of Aster 30 is 50km.
Aster 30 SAMP/T – Surface-to-Air Missile Platform / Terrain - Army Technology
@Slav Defence
 
.
Berreta ARX-100 review

Aster 30 SAMP/T – Surface-to-Air Missile Platform / Terrain



The Aster 30 SAMP/T (sol-air moyenne portée terrestre or surface-to-air medium range / land) is a land-based air defence system effective against high-speed threats such as tactical ballistic missiles, cruise missiles, combat aircraft and UCAVs (unmanned combat air vehicles). The missile system has been developed by Eurosam, jointly owned by MBDA Missile Systems and Thales.

Aster 30 SAMP/T air defence system development
The French Ministry of Defence has placed orders for six SAMP/T systems for the French Army and six systems for the French Air Force. Eurosam has received an order for six SAMP/T systems for the Italian Army.

Full-scale development of the Aster 30 missile and the SAMP/T started in 1990, with production engineering and initial volume production in 1997. Qualification firing trials began in 1999.

The first qualification trial involving the whole system took place in July 2005. The successful trial included target acquisition and tracking by the Arabel radar and interception of a C-22 target at an altitude of 7,000m and range of 26km. A second successful test took place in December 2005. The third and final test took place in November 2006 and involved interception of the target at altitude 3,000m and range 11km.

SAMP/T began operational evaluation with the French and Italian armies in May 2008 with two successful test firings.

"The Aster 30 SAMP/T (sol-air moyenne portée) is a land-based air defence system."
Operational acceptance tests were concluded with the Italian Army and French Air Force in July 2008. In December 2008, a successful firing test took place, incorporating software changes suggested by the technical evaluation, prior to the delivery of the first serial production system to the French Air Force. SAMP/T systems in French service were operational by 2010.

The SAMP/T intercepted its first ballistic target at the DGA missile launch test centre (CELM) in Biscarosse in October 2010. The missile systems are now in series production and being offered for the export market.

MBDA is developing the ASTER block 2 missile for the SAMP/T launcher, which will have longer range and, with different trajectories, will be effective against future ballistic missile threats.



Related Suppliers
ISO Group - Spare Parts, Components and Logistics for Military Vehicles and Land Equipment
ISO Group, headquartered in West Melbourne, Florida, is a world leader...

See all suppliers


SAMP/T surface-to-air missile battery
A typical SAMP/T battery includes a command and control vehicle, Arabel radar and up to six transporter erector launcher (TEL) vehicles, each with eight missiles and a store of reload missiles. The missile TEL vehicles are dispersed to launch sites located up to 10km from the Arabel radar.

The SAMP/T system uses MAGICS (modular architecture for graphics and image console systems) and MARA (modular architecture for real-time applications) computers.

The Arabel multi-function radar acquires and tracks the targets. The command system evaluates, prioritises and designates the targets. The data on primary and secondary targets is downloaded to the missile launchers and seeker and data link frequency channels are allocated.

The missile is launched and as it turns over in flight towards the target, the target's position and velocity data are transmitted via the uplink channel at one second intervals.

Arabel radar
The SAMP/T uses an upgraded version of the Arabel radar, with improved performance developed under the Aster 30 block 1 upgrade program, in order to extend the system's capability against higher speed targets and higher altitude targets. The SAMP/T system can intercept at 600km range (short range ballistic missile targets).

The Thales Arabel radar is a 3D phased array radar for surveillance, tracking and missile guidance. The rectangular, 4,000-element, phased array antenna rotates at one revolution a second. Arabel operates in the eight to 13GHz X band (I/J band) with 360° azimuthal and -5° to 90° elevation scanning.

The system can track up to 100 targets simultaneously and manage the uplink transmission of command update data to 16 missiles simultaneously. The standard Arabel radar operates at 150kW peak power and has a range of 100km.

The beam can be shaped to optimise the performance. The radar uses frequency agility and pulse compression ECCM (electronic counter-countermeasures) techniques.

"The successful Aster SAMP/T trial included target acquisition and tracking by the Arabel radar."
Land vehicle
For the French Army, the SAMP/T is mounted on a Renault 8x4 Kerax transporter erector launcher vehicle or a similar vehicle. Each vehicle is fitted with eight ready-to-fire missile containers and all eight missiles from a single launcher can be salvo-fired in under ten seconds.

The SAMP/T for the Italian Army will be mounted on Astra 8x8 transporter erector launcher trucks, each truck with eight missiles.

Aster 30 block 1 missiles
SAMP/T uses Aster 30 block 1 missiles which are equipped with a modified seeker, fuse, signal processing and a directional blast warhead where larger warhead fragments are directed towards the target.

The Aster 30 missile has a tandem first stage solid propellant booster motor which is jettisoned after launch and turn-over and before the mid-course phase. The first stage booster motor, developed by Fiat Avio, has length 2.3m, weight 340kg, burn time 3.5 seconds. It has two steerable nozzles to provide the missile with thrust vector control during the initial stage of flight.

After jettisoning the first stage booster motor, the second stage missile has a weight of 110kg, length of 2.6m and diameter of 18cm. The body of the missile carries four long rectangular wings and four blunt-tipped triangular control fins at the rear. The second stage missile is fitted with solid propellant sustainer motor. The sustainer motor efflux tube carries the uplink receiver and the fin actuators.

The missile uses inertial mid-course guidance, with guidance correction update data being transmitted from the ground-based fire control centre via the Arabel multifunction radar's uplink data channel. The Sagem Agyle inertial guidance unit is fitted with a Sistemi Inersiali inertial guidance reference system and a Sagem miniature laser gyroscope.

The missile uses 'pilotage en force' (PIF) fine-controlled side thrust exhaust for manoeuvrability in the final phase of flight just before intercept, to ensure that the missile is within 2m of the target when the warhead is detonated. The missile's PIF system comprises a solid propellant gas generator which exhausts through four lateral nozzles in the long rectangular wings at a point close to the missile's centre of gravity.

The missile does not role in the final phase of flight. The guidance control system commands the PIF system to exhaust through one or two nozzles generating a controlled sideways thrust pulling up to 60g acceleration.

The missile and the target approach each other on a reciprocal flight path. As the missile approaches the target in the terminal phase, the missile uses an active pulse Doppler radar seeker, a derivative of the AD4 seeker design which incorporates a high-power travelling wave tube transmitter and wide antenna deflection, to home in on the target.

"Aster 30 SAMP/T has the capability to intercept targets at altitudes from 50m to 20km."
The seeker is laid on the target using data transmitted via the ground to missile uplink. Once seeker lock-on has been conformed the missile operates autonomously. The modifications to the seeker include higher closing velocity capability, an adjustment to the duty cycle to increase the transmitted power, an additional high resolution range function, and modified target lock-on and tracking algorithms. The seeker has ECCM including home on jam and clutter suppression. The programmable J-band pulse Doppler AD4A radar seeker manufactured by Thales and Selex Sistemi Integrati, operates at 12GHz to 18GHz.

The missile, which weighs typically 100kg at target intercept, is fitted with a 15kg directional blast fragmentation warhead designed by Fiat Avio and MBDA. The warhead is fitted with a Ku-band proximity fuse, which generates a constant working pseudo random phase digital coded waveform. The warhead is loaded with two types of fragments, 4g and larger fragments, which are directed towards the target.

Performance
The maximum speed of Aster 30 is 1.4km/sec. Aster 30 has the capability to intercept targets at altitudes from 50m to 20km. Against aircraft targets flying at altitudes above 3km, the maximum range of the Aster 30 is 100km. At aircraft targets with altitudes below 3km, the range of Aster 30 is 50km.
Aster 30 SAMP/T – Surface-to-Air Missile Platform / Terrain - Army Technology
@Slav Defence
i don't think your getting the aster 30 missile. well you can buy it off the shelf, but not with tot. that missile is way to advanced
 
.
i don't think your getting the aster 30 missile. well you can buy it off the shelf, but not with tot. that missile is way to advanced
We will not buy it with TOT off course but we in the past also had bought Air Defence systems from Turkey so I think we can buy 10 to 16 batteries. Because the sight Army Chief visited is of Air Defence.
 
.
We will not buy it with TOT off course but we in the past also had bought Air Defence systems from Turkey so I think we can buy 10 to 16 batteries. Because the sight Army Chief visited is of Air Defence.
now you talking have some asters30 around Islamabad you would be good

fuze1.png
m02010081700003.jpg


no rubbish they bult two tanker for them they are participating in tender for amphibious ship(helicopter carrier) they could do a joint development as italy is developing one for them selfs. also in the rail market italy wants to enter indian markets.
 
.

Pakistan Defence Latest Posts

Back
Top Bottom