Damascene swords were famous. Persians produced good armor. Other stuff, like the catapults Mohammed introduced to Arabia and the cannons of the Ottomans, generally relied on Christian smiths, and of course no one could match the power, beauty, and grace of an Arabian horse. Is there something I'm missing?
You mentioned some of the good ones.
Here are some more:
Marching band and military band: The marching band and military band both have their origins in the Ottoman military band, performed by the Janissary since the 16th century.
Horseman's axe: An early type of war hammer that was of Islamic origin. The Tirant lo Blanch in the 15th century maintained that it was "the deadliest weapon when fighting in full armour, when it was hung from a cavalryman's saddle-bow."
Defense
Adarga: A hard leather shield used originally by the Moors of Islamic Spain. The adarga was a traditional defense employed by the Moorish light horseman who used it along with the lance. Throughout the 14th and 15th centuries the adarga was also used by Spanish Christian soldiers including their own light cavalry (la jineta) some of whom adopted Moorish fighting patterns. The adarga was in widespread use until the 16th century and the progress of firearms.
Camail: It was used as part of the mighfar, an Islamic helmet. It was in use from the 8th to the 14th century.
Defensive trench: A military innovation developed by early Muslims during the Battle of the Trench in 627, when the Meccans invaded Medina. The idea was suggested by Salman the Persian to the commander Muhammad, who then ordered the digging of a wide trench around Medina to halt their invasion. The battle resulted in the withdrawal of the Meccan army and a victory for Medina.
Fireproof clothing: In 1260, Egyptian Mamluk soldiers at the Battle of Ain Jalut wore fireproof clothing to protect themselves from gunpowder fires as well as chemicals in gunpowder warfare. Their clothing consisted of a silk tunic (still worn by Formula 1 drivers underneath their Nomex fire suits), aketon (from the Arabic al-qutn "the cotton"), and mainly a woolen overtunic that protects against fires and chemical weapons, similar to the clothing worn by modern soldiers for protection against biological, chemical and nuclear weapons. Due to the effectiveness of their fireproof clothing, the Egyptian soldiers were able to attach gunpowder cartridges and incendiary devices to their clothing.
Mail-and-plate armour: In Kitab al-Durra al-Maknuna (The Book of the Hidden Pearl) written in the 8th century by Geber, he describes the production of mail-and-plate armours (jawasin), helmets (bid) and shields (daraq).
Short-hemmed and short-sleeved hauberk: The short-hemmed, short-sleeved hauberk is thought to be of Islamic origin. It was usually worn with a mail.
Steel helmet: An early Mamluk steel helmet from the 13th century has been preserved. It was worn by Sultan Mohammad en-Nasser ibn Qalaoun (died 1290).
Turban helmet: A type of helmet worn over turbans. The earliest evidence for it dates back to the 15th century, to Farrukh Yassar and the Ottoman Sultan Bayzid.
Gunpowder technology
A picture of a 15th century Granadian siege cannon from the book Al-izz wal rifa'a.
The Ottoman Janissary corps were using matchlock muskets since the 1440s. They are depicted battling the Knights Hospitaller in this 1522 painting.
Abus gun and Howitzer: The Abus gun was an early form of howitzer created by the Ottoman Empire. Abus guns were a significant part of the Ottoman Empire's artillery, and could perhaps even be referred to as the signature piece of artillery during the height of their power, in the 16th and 17th centuries, for no other civilization used a gun quite like this gun up until this time.
Autocannon and multi-barrel gun: Fathullah Shirazi (c. 1582), a Persian-Indian polymath and mechanical engineer who worked for Akbar the Great in the Mughal Empire, invented the autocannon, the earliest multi-shot gun. As opposed to the polybolos and repeating crossbows used earlier in ancient Greece and China, respectively, Shirazi's rapid-firing gun had multiple gun barrels that fired hand cannons loaded with gunpowder.
Explosive gunpowder: The ideal composition for explosive gunpowder used in modern times is 75% potassium nitrate (saltpetre), 10% sulfur, and 15% carbon. Several almost identical compositions were first described by the Arab engineer Hasan al-Rammah as a recipe for the rockets (tayyar) he described in The Book of Military Horsemanship and Ingenious War Devices in 1270. Several examples include a tayyar "rocket" (75% saltpetre, 8% sulfur, 15% carbon) and the tayyar buruq "lightning rocket" (74% saltpetre, 10% sulfur, 15% carbon). He also states recipes for fireworks and firecrackers made from these explosive gunpowder compositions. He states in his book that many of these recipes were known to his father and grandfather, hence dating back to at least the late 12th century. Medieval French reports suggest that Muslim armies also used explosives against the Sixth Crusade army led by Ludwig IV, Landgrave of Thuringia in the 13th century.
Gunpowder cartridge: Gunpowder cartridges were employed by the Egyptian Mamluks, for use in their fire lances and hand cannons against the Mongols at the Battle of Ain Jalut in 1260.
Hand cannon, handgun, and small arms: The first portable hand cannons (midfa) loaded with explosive gunpowder, the first example of a handgun and portable firearm, were used by the Egyptians to repel the Mongols at the Battle of Ain Jalut in 1260, and again in 1304. The gunpowder compositions used for the cannons at these battles were later described in several manuscripts in the early 14th century. According to Shams al-Din Muhammad (d. 1327), the cannons had an explosive gunpowder composition (74% saltpetre, 11% sulfur, 15% carbon) almost identical to the ideal compositions for explosive gunpowder used in modern times (75% saltpetre, 10% sulfur, 15% carbon).
Iron-cased and metal-cylinder rocket artillery: The first iron-cased and metal-cylinder rocket artillery were developed by Tipu Sultan, a Muslim ruler of the South Indian Kingdom of Mysore, and his father Hyder Ali, in the 1780s. He successfully used these metal-cylinder rockets against the larger forces of the British East India Company during the Anglo-Mysore Wars. The Mysore rockets of this period were much more advanced than what the British had seen, chiefly because of the use of iron tubes for holding the propellant; this enabled higher thrust and longer range for the missile (up to 2 km range). After Tipu's eventual defeat in the Fourth Anglo-Mysore War and the capture of the Mysore iron rockets, they were influential in British rocket development, inspiring the Congreve rocket, which was soon put into use in the Napoleonic Wars. According to Stephen Oliver Fought and John F. Guilmartin, Jr. in Encyclopedia Britannica (2008): "Hyder Ali, prince of Mysore, developed war rockets with an important change: the use of metal cylinders to contain the combustion powder. Although the hammered soft iron he used was crude, the bursting strength of the container of black powder was much higher than the earlier paper construction. Thus a greater internal pressure was possible, with a resultant greater thrust of the propulsive jet. The rocket body was lashed with leather thongs to a long bamboo stick. Range was perhaps up to three-quarters of a mile (more than a kilometre). Although individually these rockets were not accurate, dispersion error became less important when large numbers were fired rapidly in mass attacks. They were particularly effective against cavalry and were hurled into the air, after lighting, or skimmed along the hard dry ground. Hyder Ali's son, Tippu Sultan, continued to develop and expand the use of rocket weapons, reportedly increasing the number of rocket troops from 1,200 to a corps of 5,000. In battles at Seringapatam in 1792 and 1799 these rockets were used with considerable effect against the British." Tippu Sultan wrote a military manual on his rocket artillery, the Fathul Mujahidin.
Matchlock: The Janissary corps of the Ottoman army were using matchlock muskets as early as the 1440s. The first dated illustration of a matchlock mechanism in Europe dates to 1475.
Purified potassium nitrate: Muslim chemists were the first to purify potassium nitrate (saltpetre; natrun or barud in Arabic) to the weapons-grade purity for use in gunpowder, as potassium nitrate needs to be purified to be used effectively. This purification process was first described by Ibn Bakhtawayh in his al-Muqaddimat in 1029. The first complete purification process for potassium nitrate is described in 1270 by the Arab chemist and engineer Hasan al-Rammah of Syria in his book al-Furusiyya wa al-Manasib al-Harbiyya ('The Book of Military Horsemanship and Ingenious War Devices', a.k.a. the Treatise on Horsemanship and Stratagems of War). He first described the use of potassium carbonate (in the form of wood ashes) to remove calcium and magnesium salts from the potassium nitrate. Hasan al-Rammah also describes the purifying of saltpetre using the chemical processes of solution and crystallization, and this was the first clear method for the purification of saltpetre. Bert S. Hall, however, disputes the efficacy of al-Rammah's formula for the purification of potassium nitrate.
Torpedo: The invention of torpedoes occurred in the Muslim world, and were driven by a rocket system. The works of Hasan al-Rammah in Syria in 1275 shows illustrations of a torpedo running on water with a rocket system filled with explosive materials and having three firing points.
Swordmaking
Damascus steel: One of the most famous steels produced in the medieval Near East was Damascus steel used for swordmaking, and mostly produced in Damascus, Syria, in the period from 900 to 1750. This was produced using the crucible steel method, based on the earlier Indian wootz steel. This process was further refined in the Middle East using locally produced steels. The process allowed carbides to precipitate out as micro particles arranged in sheets or bands within the body of a blade. The carbides are far harder than the surrounding low carbon steel, allowing the swordsmith to make an edge which would cut hard materials with the precipitated carbides, while the bands of softer steel allowed the sword as a whole to remain tough and flexible. A team of researchers based at the Technical University of Dresden that uses x-rays and electron microscopy to examine Damascus steel discovered the presence of cementite nanowires and carbon nanotubes. Peter Paufler, a member of the Dresden team, says that these nanostructures give Damascus steel its distinctive properties and are a result of the forging process.
Flyssa and Kaskara: The swords developed in early Islamic Morocco and the Baguirmi Sultanate, respectively.
Grip: In the late 12th century, the figure of a Turkish cavalryman was depicted holding a sabre which was carried using what what would later be known in Europe as the 'Italian Grip'.
Kilij: A sabre developed by the Turks in Central Asia, it came into widespread use by the 15th century. Polish sabres of the 17th century (known as pallash or palache) were derived from this weapon.
Nimcha: An Arab short sabre with a knuckle guard developed in Morocco.
Pulwar, Qama, and Quaddara: The pulwar is a form of talwar that was developed in Islamic India. The qama was a sword developed in Islamic Georgia, and is probably the origin of the Cossack kindjal. The quaddara was a Persian broadsword, like a long kindjal, used in the Caucasus.
Sabre and Saif: The sabre and the Arab saif were developed in the early Islamic world.
Scimitar and Shamshir: The earliest evidence of the scimitar, or curved sword, is from the 9th century, when it was used among soldiers in the Khurasan region of Persia. The Persian shamshir in its current form dates to the 15th century.
Shashka and Shotel: Developed in the Caucasus and Abyssinia, respectively.
Takouba, Talwar, and Yatagan: The takouba was developed by the Taureg people of the Sahara. The talwar is an Indian sword based on the Persian shamshir. The yatagan was developed in Turkey.
Zulfiqar: An early Islamic sword that belonged to Ali in the 7th century.
and the arabian horse aaah what a wonderful creature