BlueDot_in_Space
FULL MEMBER
- Joined
- Feb 10, 2011
- Messages
- 1,325
- Reaction score
- 0
BANGALORE: US space agency NASA and India's premier space agency ISRO are in talks for jointly building a satellite for the first time.
"Now, there is a feasibility study going on whether we can jointly make a satellite, with synthetic aperture radar (SAR) payloads working on two frequency bands - L-band and S-band", Chairman of Indian Space Research Organisation (ISRO) K Radhakrishnan told PTI here.
Charles F Bolden Jr., Administrator of National Aeronautics and Space Administration (NASA) of United States, visited the Space Applications Centre (SAC) of ISRO in Ahmedabad on June 25.
He had a meeting with Radhakrishnan, also Secretary, Department of Space, along with senior officials of ISRO to discuss the ongoing cooperative activities between ISRO and NASA and also the potential areas of future cooperation.
"...the joint satellite mission is an important step. It's not making an instrument and plugging it actually. It's working together. That's what we are discussing. It (working together) should happen in the next few months", Radhakrishnan said.
"Both organisations are coming together and saying let's develop it together...use your strength, use my strength. That's a good way of working", he said.
"It (the proposed satellite) is interesting from scientific point of view, it's interesting from normal resource management point of view," he said.
Radhakrishnan said NASA's Jet Propulsion Laboratory would make the radar system "if it (in case of NASA, ISRO deciding to work together on the mission) is getting through".
On ISRO's role, he said, "We will be working together. Some will be built by us, some will be built by them. So, this (work-sharing) has to be finalised", adding, data generated by the mission would be used by both ISRO and NASA.
NASA, ISRO in talks for developing satellite jointly - The Economic Times
ISRO has already designed a Dual Band SAR for Chandrayaan 2
A Dual-frequency Spaceborne SAR Mission Concept for Carbon Disturbance Measurements and Characterization
Paul A Rosen, Jet Propulsion Laboratory, parosen@jpl.nasa.gov (Presenter)
Ralph Dubayah, University of Maryland, dubayah@umd.edu
Bradford H Hager, Massachusetts Institute of Technology, bhhager@mit.edu
Ian Joughin, University of Washington, ian@apl.washington.edu
Since the 2007 National Academy of Science “Decadal Survey” report “Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond,” the National Aeronautics and Space Administration (NASA) has been studying concepts for a Synthetic Aperture Radar (SAR) mission to determine Earth change in three disciplines – ecosystems, solid earth, and cryospheric sciences. One of the most promising and original concepts involves an innovative international partnership between NASA and the Indian Space Research Organization (ISRO). Previous NASA concepts had focused on exploiting an L-band array-fed reflector SAR configuration that enabled > 200 km swath at full SAR resolution and full polarimetry simultaneously in order to meet requirements in all three disciplines. The electronics in this design are relatively compact, allowing for straightforward addition of feed array elements at other frequencies. As the partnership concept with ISRO developed, it became clear that flying dual L- and S-band SAR capabilities, with L-band electronics supplied by NASA and S-band electronics by ISRO, would satisfy science and application requirements of the US and India. A dual-frequency fully polarimetric SAR with the potential for global coverage every 12 days would offer unprecedented capability that researchers could exploit in new and exciting ways. The joint NASA/ISRO science requirements being formulated for ecosystems cover biomass disturbance, agriculture, wetlands and coastal processes, alpine vegetation, and high-resolution soil moisture. The two wavelength system has a number of advantages, including extending the sensitivity of biomass change and regrowth measurements to lower levels of biomass, improved classification of vegetation types, and possibilities for improved vegetation structure estimates, as well as mitigation of ionospheric effects. This poster will provide an overview of the conceptual system and highlight some of the anticipated science products.
"Now, there is a feasibility study going on whether we can jointly make a satellite, with synthetic aperture radar (SAR) payloads working on two frequency bands - L-band and S-band", Chairman of Indian Space Research Organisation (ISRO) K Radhakrishnan told PTI here.
Charles F Bolden Jr., Administrator of National Aeronautics and Space Administration (NASA) of United States, visited the Space Applications Centre (SAC) of ISRO in Ahmedabad on June 25.
He had a meeting with Radhakrishnan, also Secretary, Department of Space, along with senior officials of ISRO to discuss the ongoing cooperative activities between ISRO and NASA and also the potential areas of future cooperation.
"...the joint satellite mission is an important step. It's not making an instrument and plugging it actually. It's working together. That's what we are discussing. It (working together) should happen in the next few months", Radhakrishnan said.
"Both organisations are coming together and saying let's develop it together...use your strength, use my strength. That's a good way of working", he said.
"It (the proposed satellite) is interesting from scientific point of view, it's interesting from normal resource management point of view," he said.
Radhakrishnan said NASA's Jet Propulsion Laboratory would make the radar system "if it (in case of NASA, ISRO deciding to work together on the mission) is getting through".
On ISRO's role, he said, "We will be working together. Some will be built by us, some will be built by them. So, this (work-sharing) has to be finalised", adding, data generated by the mission would be used by both ISRO and NASA.
NASA, ISRO in talks for developing satellite jointly - The Economic Times
ISRO has already designed a Dual Band SAR for Chandrayaan 2
A Dual-frequency Spaceborne SAR Mission Concept for Carbon Disturbance Measurements and Characterization
Paul A Rosen, Jet Propulsion Laboratory, parosen@jpl.nasa.gov (Presenter)
Ralph Dubayah, University of Maryland, dubayah@umd.edu
Bradford H Hager, Massachusetts Institute of Technology, bhhager@mit.edu
Ian Joughin, University of Washington, ian@apl.washington.edu
Since the 2007 National Academy of Science “Decadal Survey” report “Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond,” the National Aeronautics and Space Administration (NASA) has been studying concepts for a Synthetic Aperture Radar (SAR) mission to determine Earth change in three disciplines – ecosystems, solid earth, and cryospheric sciences. One of the most promising and original concepts involves an innovative international partnership between NASA and the Indian Space Research Organization (ISRO). Previous NASA concepts had focused on exploiting an L-band array-fed reflector SAR configuration that enabled > 200 km swath at full SAR resolution and full polarimetry simultaneously in order to meet requirements in all three disciplines. The electronics in this design are relatively compact, allowing for straightforward addition of feed array elements at other frequencies. As the partnership concept with ISRO developed, it became clear that flying dual L- and S-band SAR capabilities, with L-band electronics supplied by NASA and S-band electronics by ISRO, would satisfy science and application requirements of the US and India. A dual-frequency fully polarimetric SAR with the potential for global coverage every 12 days would offer unprecedented capability that researchers could exploit in new and exciting ways. The joint NASA/ISRO science requirements being formulated for ecosystems cover biomass disturbance, agriculture, wetlands and coastal processes, alpine vegetation, and high-resolution soil moisture. The two wavelength system has a number of advantages, including extending the sensitivity of biomass change and regrowth measurements to lower levels of biomass, improved classification of vegetation types, and possibilities for improved vegetation structure estimates, as well as mitigation of ionospheric effects. This poster will provide an overview of the conceptual system and highlight some of the anticipated science products.