COLDHEARTED AVIATOR
BANNED
- Joined
- Jul 28, 2010
- Messages
- 5,052
- Reaction score
- -6
- Country
- Location
Mobility update on India's soldier modernisation programme
This is the thrid part of Defence IQ's report on India's Futuristic Soldier As a System (F-INSAS) programme. This article focuses on mobility.
One of the chief aims of F-INSAS is of course to lighten the load for the soldier in battle, which will subsequently enhance survival rates and operational effectiveness. Developers are working on retaining ballistic protection through a tactical vest that includes cover to the legs, groin, neck and collar, but does not chafe in hot and uncomfortable conditions nor impede the soldier's movement.
Developers have been under pressure to reconcile a lighter load with the 'soldier as a system' concept, including the need to weave cabling and battery packs into clothing. Specifically, India's intention of providing Palmtop computers, fire proof undergarments, health monitoring sensors, and integrated respirators and sensors for chemical protection will all add to the 'on board' hardware requirements.Looking at the positives, an advance in new 'micro' technology, such as smaller communication devices and tablet PCs, should counter this in the long run, provided that systems remain flexible enough to make fast upgrades after the programme is finally rolled out into the battlefield.
The Indian soldier's helmet will be made of a lighter-weight composite material so that it balances out the additions of the added, visor, camera and internal communication system, but still protects from 9mm carbine rounds and shrapnel.
It is possible that armoured clothing could include a shear-thickening capability that not only disperses the impact of a gunshot or blast, but could potentially harness and transfer that energy for its own internal energy system.
Simpler modifications are also being implemented to standard issue clothing to make the soldier more manoeuvrable, such as "modular" gloves that can be adapted for any type of weather and enable easy handling of a weapon.
Back at the Ranch
When it comes to survivability, most major militaries are anticipating a continued rise in urban and irregular warfare, which in turn is calling for a rising prioritisation for mobility over general protection.
Exo-skeletal suits, a popular concept currently being evaluated by R&D teams worldwide are not believed to be an aspect of F-INSAS. Such suits or 'Lower Body Units' (LBUs) are intended to enhance a soldier's strength by providing a form-fitting machinized frame that augments the muscle power of the wearer.
Integration of solar panel and nanotechnology systems to lighten the load has already been explored by British Armed Forces in tests to convert kinetic, solar and thermal energy into electricity, but admit that thermoelectric (TE) solutions could still be 5-10 years from incorporation into clothing, and longer still from seeing the battlefield. However, key to the planning phase of TE solutions is the concept of "building in redundancy" so that lightweight clothing, which is likely to tear, will simply see its electricity re-routed rather than severed.
The US Future Force Warrior programme has entertained secondary applicable shear-thickening solutions to armour in order to enhance capability without adding to the load. One product looks to provide a spray-on option that stiffens on impact with the round in enough time to disperse the force, but testing and development remains ongoing, as it does with related ceramic and ferrofluid smart materials.
IntelliBriefs: Mobility update on India's soldier modernisation programme
This is the thrid part of Defence IQ's report on India's Futuristic Soldier As a System (F-INSAS) programme. This article focuses on mobility.
One of the chief aims of F-INSAS is of course to lighten the load for the soldier in battle, which will subsequently enhance survival rates and operational effectiveness. Developers are working on retaining ballistic protection through a tactical vest that includes cover to the legs, groin, neck and collar, but does not chafe in hot and uncomfortable conditions nor impede the soldier's movement.
Developers have been under pressure to reconcile a lighter load with the 'soldier as a system' concept, including the need to weave cabling and battery packs into clothing. Specifically, India's intention of providing Palmtop computers, fire proof undergarments, health monitoring sensors, and integrated respirators and sensors for chemical protection will all add to the 'on board' hardware requirements.Looking at the positives, an advance in new 'micro' technology, such as smaller communication devices and tablet PCs, should counter this in the long run, provided that systems remain flexible enough to make fast upgrades after the programme is finally rolled out into the battlefield.
The Indian soldier's helmet will be made of a lighter-weight composite material so that it balances out the additions of the added, visor, camera and internal communication system, but still protects from 9mm carbine rounds and shrapnel.
It is possible that armoured clothing could include a shear-thickening capability that not only disperses the impact of a gunshot or blast, but could potentially harness and transfer that energy for its own internal energy system.
Simpler modifications are also being implemented to standard issue clothing to make the soldier more manoeuvrable, such as "modular" gloves that can be adapted for any type of weather and enable easy handling of a weapon.
Back at the Ranch
When it comes to survivability, most major militaries are anticipating a continued rise in urban and irregular warfare, which in turn is calling for a rising prioritisation for mobility over general protection.
Exo-skeletal suits, a popular concept currently being evaluated by R&D teams worldwide are not believed to be an aspect of F-INSAS. Such suits or 'Lower Body Units' (LBUs) are intended to enhance a soldier's strength by providing a form-fitting machinized frame that augments the muscle power of the wearer.
Integration of solar panel and nanotechnology systems to lighten the load has already been explored by British Armed Forces in tests to convert kinetic, solar and thermal energy into electricity, but admit that thermoelectric (TE) solutions could still be 5-10 years from incorporation into clothing, and longer still from seeing the battlefield. However, key to the planning phase of TE solutions is the concept of "building in redundancy" so that lightweight clothing, which is likely to tear, will simply see its electricity re-routed rather than severed.
The US Future Force Warrior programme has entertained secondary applicable shear-thickening solutions to armour in order to enhance capability without adding to the load. One product looks to provide a spray-on option that stiffens on impact with the round in enough time to disperse the force, but testing and development remains ongoing, as it does with related ceramic and ferrofluid smart materials.
IntelliBriefs: Mobility update on India's soldier modernisation programme