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Abstract: Radar cross-section (RCS) of an object is a complex function of various geometric variables, frequency and angles of
incidence. In this work, an artificial intelligence solution is provided to predict the non-deterministic characteristics of RCS using
the supervised machine learning algorithm that involves Gaussian process (GP) regression. A parametrised aircraft model is
used to generate training data where five variables are selected as predictors while the response is chosen to be monostatic
RCS in the azimuth plane. To provide a comparison of GP modelling-based predictions, shooting and bouncing rays-based
multi-frequency RCS simulations are used and the results show good agreement. To further validate the GP-based modelling
approach, the data of a design point is compared with the measured RCS of 1:8 scaled-down aircraft model, which confirms the
accuracy of the proposed methodology. Good prediction capabilities of GP regression for RCS evaluation of complex
geometries and requirement of small data set make it an excellent tool for exploring the large design space as well as
integration into multi-disciplinary design optimisation environments.

1 Introduction

Radar cross-section (RCS) has found numerous applications in
modern technologies such as active missile systems, lidars, target
detection and monitoring in the Internet of Things (IoT), human
breath rate detection, stealth aircraft and satellite design etc. [1-6].
In addition to achieving low observability, it plays a critical role in
designing a number of electronic warfare systems, for instance
radars, jammers and radar warning receivers [7—11]. Computing
the RCS of electrically large structures is a complex process that
requires large amounts of memory and computation time [7, 12].
These requirements are even greater when simulations are carried
out for design space exploration in multi-disciplinary design
optimisation. RCS variables can be broadly classified into two
categories: simulation parameters (frequency, polarisation etc.) and
geometric parameters (wing sweep angle, dihedral angle etc.).
Variation in most of these parameters affects RCS in a complex
manner, for example when the angle of incidence is changed, the
generated RCS plot is quite complex and can be regarded as
random [13].

To compute RCS of complex geometries across a large design
space, artificial intelligence has the potential of providing a viable
solution. It has previously been used to predict RCS as a function
of frequency by Jacobs and du Plessis. [14], who have carried out a
multi-frequency analysis to predict the RCS of a missile at one
incident angle. Owing to the quasi-periodic nature of the response,
Jacobs and du Plessis [14] have used a composite kernel
covariance function for Gaussian process (GP) modelling of RCS.
As there was only one predictor (frequency), the training time for
the model was considerably less. In related work, Jacobs and du
Plessis [15] have used the same composite kernel function for
modelling the aperture efficiency and squared-exponential
covariance function for predicting antenna scattering parameters
(S1)) [16]. In all of these references [14—16], only one predictor (i.e.
frequency) was used. However, in reality, the number of geometric
and simulation parameters affect RCS in a random manner and
therefore, it becomes essential to use a kernel function which is
applicable for aperiodic responses and requires a separate kernel
length scale for each variable.

Simulation parameters (e.g. frequency, angle of incidence etc.)
and geometric parameters (e.g. wing sweep angle, dihedral angle
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etc.) form a very complex mesh in three-dimensional space as
depicted in Fig. 1.

In this work, a design space defined by the upper and lower
bounds of four key geometric variables is explored at multiple
frequencies by computing RCS in azimuth plane using shooting
and bouncing rays (SBR) [17] simulations. Subsequently, the
results are used as training data for GP modelling to predict RCS at
intermediate design points. All of the geometric parameters in this
study are seen to produce an aperiodic RCS response. Therefore,
instead of composite kernel covariance function, Matern 5/2
covariance function was used with four separate kernel length
scales.

Section 2 outlines a brief mathematical background of used
kernel covariance function and kernel scales. SBR simulations as a
function of geometric variables and angles of incidence show the
aperiodic nature of monostatic RCS. Section 3 presents the
comparison of GP modelling and SBR simulations at one design
point and multiple frequencies. Comparison of root mean square
error (RMSE) of the GP model for 16 randomly selected design
points is also shown. Data of one design point was used to fabricate
a 1:8 scaled-down aircraft model and its RCS was measured in an
anechoic chamber and compared with the predicted RCS. Section 4
provides a conclusion to this research work.

2 Background
2.1 GP regression overview

In regression modelling, a kernel function is a key element that
describes the covariance of a random variable. Changing the kernel
function changes the prior, and hence, changing the model
response. Based on the underlying physics, the responses vary with
respect to the predictors and various kernel functions have been
proposed for modelling of different response types [18, 19]. For
modelling of quasi-periodic responses, Jacobsand du Plessis [14]
have proposed a composite covariance function (1) which is a
product of two covariance functions that are in the same space:
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where a} is the maximum allowable covariance, 4 the period of the
quasi-periodic response, 8 the length scale for periodic component
and 7, the length scale for aperiodic component.

These length scales change the effectiveness of the distance
between the training and testing data. This approach takes into
account the periodicity of RCS responses through the
hyperparameter A.

Fig. 2 shows the quasi-periodic RCS response when the
frequency is taken as the predictor. On the other hand, once RCS
response is evaluated for varying geometric parameters, it becomes
completely aperiodic as shown in Fig. 3. In addition, since we are
dealing with multiple parameters, a multivariate statistical analysis
is required that encompasses this variation. We disregard any
trends or periodicity in the data and use the Matérn covariance
function, which is positive semi-definite, to model RCS as a
function of geometric variables. The choice was made on the basis
of the differentiability and stationary property of the function and a
special case of Matérn 5/2 was employed which is as follows:

k(x,x') = o} e’ﬁr(l +\5r+ %ﬁ) )

Length scales for each predictor are embedded in the variable ‘
 (3) and are used to scale the distance between the training and

testing data:
D 2
e % (% 2xk) 3)
=1 T

The kernel length scale 7; takes on a new value for each predictor.
Hence, the use of multiple predictors increases the number of
computations required to calculate each element of the kernel
matrix given in (4):

k(x1, x1) k(x, x,)
K= : : “4)
k(xm .X]) k(xm xn)
K = [k(x',x) k(X' x,) k(x', x,)] 5)
K"’ =k(x',x") 6)

The matrices in (4)—(6) are used to compute the mean and variance
of the established Gaussian distribution given by

x|x ~ #(K'K'x, K" - K'K'K") @)

This approach works because the training data is assumed to be a
subset of a multi-variate Gaussian distribution and the
hyperparameters a} and 7, are optimised as shown by Williams and
Rasmussen [18]. It drastically increases the computation time as
seen from the elements of the kernel matrix and from the mean and
variance of the modelled distribution but once the response surface
is constructed, RCS can be accurately predicted, hence making this
approach suitable for integration in multi-disciplinary modelling
and simulation environments. Several machine learning approaches
have previously been applied to address various problems such as
target classification [20], image de-noising [21], detection of
unmanned aerial vehicles [22], ship size extraction [23] and
significant wave height estimation [24]. However, this method in
particular, can be utilised in the applications where RCS
optimisation with respect to geometric parameters is required such
as stealth aircrafts, ships and satellite design. In IoT, this approach
can be used to model human targets as a function of the movement
of their body parts while as part of biomedical applications, it can
be used to estimate the breathing rate by quantifying the variation
in RCS as a function of chest movement [5]. In addition, a similar
approach can be devised to predict RCS and use it for synthetic
aperture radar imaging or to predict antenna scattering field
distributions.
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Fig. 1 Depiction of RCS as a function of frequency f,, angle of incidence
6, and geometric parameters g,, where each g, spans a space while f, and
0, take a pre-defined value
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Fig. 2 Quasi-periodic RCS responses as a function of frequency at one
incident angle

2.2 k-fold cross-validation

To validate the accuracy, modelled responses are cross-validated
using various methods depending on the size and type of the data
set. We have employed a k-fold cross-validation method because,
in our case, generating training data is computationally expensive
and this method leaves enough data for validation. Specifically, for
each frequency and angle of incidence, we have divided our design
points into five folds where four of them are used for modelling
while the fifth one is used for validation and regression loss
computation. Fig. 4 shows one such validation whose mean
regression loss is 1.59 at 0° angle of incidence.

3 Results and discussion
3.1 Simulation versus prediction

The geometric parameters that are used for the comparison of
simulated and predicted RCS responses are shown in Fig. 5. These
variables are an integral part of the aircraft design process because
they play a key role in determining stealth as well as
manoeuvrability. The design space around this variable is defined
by specifying the upper and lower bounds of these variables. These
bounds are limited by aircraft performance requirements and
constraints.

Besides the geometric parameters, the frequency and angle of
the incident wavefront are also varied to obtain a complete azimuth
plane RCS response. Simulations are done using the SBR
technique in VV polarisation at 0.5, 1, 1.5 and 2 GHz. To include
diffraction effects, the physical theory of diffraction was
incorporated with a ray density of ten edge segments per
wavelength.
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Fig. 3 Variations in monostatic RCS at 1 GHz VV polarisation when all the geometric variables are fixed except
(a) Wing sweep angle, (b) Tail sweep angle, (c¢) Horizontal tail sweep angle, (d) Dihedral angle
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Fig. 4 Five-fold cross-validation at 0.5 GHz
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Fig. 5 Geometric parameters of an aircraft model taken as predictors
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A total of 510 combinations of geometric parameters, 181
incident angles and 4 frequencies defined the entire design space
on which the training data was generated. All the simulations and
training were done on Intel E5-2620 workstation with 16 Xeon
processors of 2.1 GHz clock frequency. Using all processors in
parallel, the training time for the GP model was 29 min.

After the development of the trained model, RCS was predicted
at a new design point (dihedral angle 0°, wing sweep angle 44°,
horizontal tail sweep angle 47° and vertical tail sweep angle 43°)
and compared with the simulated RCS, as shown in Fig. 6. In these
polar charts, 0° and 180° correspond to the front (radome) and rear
(tail) sections of the aircraft model, respectively. Owing to the
symmetry in the aircraft structure, only half of the pattern is shown
here.

It is evident from the comparison that the RCS pattern predicted
using the trained model highly correlates with that of the actual
SBR simulations. Despite the sudden fluctuations in RCS as a
function of angle of incidence, the GP model accurately predicts
the RCS responses. For example, in the range of 30-60°, RCS
variation is very high but the output of the trained model closely
predicts the RCS response for all four frequencies (see the inset in
Figs. 6a—d).

A new set of 16 design points (random combinations of
geometric variables) was used for SBR simulations and GP model
predictions. The RMSE of simulated and predicted responses for
these design points was computed using (8) and is shown in Fig. 7:

NG

mne Ninc

RMSE =

®)

where oy is the simulated RCS using SBR, the predicted RCS using
GP modelling and Nj,. the number of incident directions.

Values of mean error are listed in Table 1. Out of the four
frequencies of interest, RMSE has a maximum mean value at 1.5
GHz, which is 3.8 dBsm. Across all design points and frequencies,
the maximum RMSE is only 5 dBsm which is at 1.5 GHz. Since
RCS magnitude has a higher dynamic range and fluctuates more at
higher frequencies, the prediction model is likely to be more error
prone. In simple words, the RMSE should be greater at higher
frequencies but Fig. 7 shows that RMSE shows no such behaviour.
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Fig. 6 Comparison of simulated (SBR) and predicted (GP) RCS (dBsm) at one design point in VV polarisation at

(a) 0.5 GHz, (b) 1 GHz, (¢) 1.5 GHz, (d) 2 GHz
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Fig. 7 Comparison of RMSE of GP model for 16 randomly selected design
points

This may be owing to the fact that the regression model for each

frequency has been trained independently. Therefore, the model
encompasses the fluctuations that arise at that particular frequency.
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This also implies that the trained model becomes more and more
complex with an increase in frequency.

3.2 Comparison of predicted and measured RCS

To experimentally validate the RCS response predicted by the GP
model, the data of one design point was used to fabricate 1:8
scaled-down aircraft model. The model was manufactured on a
five-axis computer numerical control (CNC) machine using
Edaboard 60-1 (chemical wood) and coated with CHO-SHIELD®
4900 electrically conductive paint.

Fig. 8 shows the fabricated model mounted on a pylon inside
the test chamber whose walls are mounted with broadband
absorbers. Styrofoam is used to cover the pylon so that it does not
affect the RCS measurement. The test chamber has a dual reflector
where the dimensions of the reflector antenna are 15 x 8 x 6 ft and
supports a frequency range of up to 20 GHz.

Fig. 9 shows the mean RCS values of SBR simulations, GP
model predictions and anechoic chamber measurements. It may be
noted that all three values (for each frequency) agree with each
other within the uncertainty bounds. However, the GP model
prediction matches more closely with experimental measurements.

Fig. 10 shows the detailed comparison of measured and
simulated RCS to the predicted RCS at this design point (dihedral
angle 0°, wing sweep angle 43.44°, horizontal tail sweep angle 42°
and vertical tail sweep angle 41.68°). It is to be noted that antenna
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Table 1 Mean error of 16 randomly selected design points

frequency, GHz
mean error, dBsm

0.5
2.28

1.0
3.4

1.5
3.8

2.0
2.58

Fig. 8 Experimental setup for RCS measurement
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Fig. 9 Mean RCS (dBsm) comparison between GP modelling, simulation and experimental results

mode scattering is not taken into account because the fighter
aircraft model does not have a nose radar. The peak value of RCS
amplitude is at 90° azimuth because of the maximum projected
area. It is evident from Fig. 10 that RCS predictions of the GP
model are in good agreement with the measured RCS. Hence, it
can be inferred that this prediction approach of multi-variate
Gaussian distribution can be used to model RCS magnitude at
multiple frequencies.

4 Conclusion

RCS signature is an important parameter in the design of stealth
aircrafts, ships and satellites. There are several geometric
parameters that affect the RCS in a random manner, which
complicates the modelling and simulation environment and results
in the high computational cost. To efficiently overcome these
constraints, a supervised learning-based approach involving GP is
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proposed to accurately predict the RCS in the given design space.
At first, RCS magnitude as a function of geometric variable was
computed and used to train a regression model. After k-fold cross-
validation, this trained model was used to make predictions within
the design space and the predicted responses were compared with
the computed RCS obtained from the SBR method. To quantify the
performance of the proposed modelling approach, RMSE was
evaluated and a mean error of 3.8 dBsm was observed which
shows a close match between the predicted and computed RCS.
For experimental validation, a 1:8 scaled-down aircraft model was
manufactured and its RCS was measured in an anechoic chamber
which was compared with the predicted RCS and the two results
showed good agreement across all frequencies. It is, therefore,
concluded that a GP regression-based prediction model can reliably
be used for RCS estimation of complex geometries. This approach
can be expanded to include more simulation and geometric
parameters for RCS optimisation in multi-disciplinary design
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Fig. 10 Comparison of measured and simulated versus predicted RCS (dBsm) in azimuth plane at one design point in VV polarisation at
(a) 0.5 GHz, (b) 1 GHz, (¢) 1.5 GHz, (d) 2 GHz

exploration. A similar methodology may also be used for the
generation of scattering field for antenna applications.
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